Suppr超能文献

用于面板计数数据非参数估计的伽马脆弱泊松模型。

The gamma-frailty Poisson model for the nonparametric estimation of panel count data.

作者信息

Zhang Ying, Jamshidian Mortaza

机构信息

Department of Statistics and Actuarial Science, University of Central Florida, Orlando, Florida 32816, USA.

出版信息

Biometrics. 2003 Dec;59(4):1099-106. doi: 10.1111/j.0006-341x.2003.00126.x.

Abstract

In this article, we study nonparametric estimation of the mean function of a counting process with panel observations. We introduce the gamma frailty variable to account for the intracorrelation between the panel counts of the counting process and construct a maximum pseudo-likelihood estimate with the frailty variable. Three simulated examples are given to show that this estimation procedure, while preserving the robustness and simplicity of the computation, improves the efficiency of the nonparametric maximum pseudo-likelihood estimate studied in Wellner and Zhang (2000, Annals of Statistics 28, 779-814). A real example from a bladder tumor study is used to illustrate the method.

摘要

在本文中,我们研究具有面板观测值的计数过程均值函数的非参数估计。我们引入伽马脆弱性变量以考虑计数过程面板计数之间的内部相关性,并构建包含脆弱性变量的最大伪似然估计。给出了三个模拟示例,以表明该估计过程在保持计算的稳健性和简单性的同时,提高了Wellner和Zhang(2000年,《统计学年鉴》28卷,779 - 814页)中研究的非参数最大伪似然估计的效率。一个来自膀胱肿瘤研究的真实示例用于说明该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验