Suppr超能文献

MinD的开关I区和II区是结合并激活MinC所必需的。

The switch I and II regions of MinD are required for binding and activating MinC.

作者信息

Zhou Huaijin, Lutkenhaus Joe

机构信息

Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.

出版信息

J Bacteriol. 2004 Mar;186(5):1546-55. doi: 10.1128/JB.186.5.1546-1555.2004.

Abstract

MinD and MinC cooperate to form an efficient inhibitor of Z-ring formation that is spatially regulated by MinE. MinD activates MinC by recruiting it to the membrane and targeting it to a septal component. To better understand this activation, we have isolated loss-of-function mutations in minD and carried out site-directed mutagenesis. Many of these mutations block MinC-MinD interaction; however, they also prevent MinD self-interaction and membrane binding, suggesting that they affect nucleotide interaction or protein folding. Two mutations in the switch I region (MinD box) and one mutation in the switch II region had little affect on most MinD functions, such as MinD self-interaction, membrane binding, and MinE stimulation; however, they did eliminate MinD-MinC interaction. Two additional mutations in the switch II region did not affect MinC binding. Further study revealed that one of these allowed the MinCD complex to target to the septum but was still deficient in blocking division. These results indicate that the switch I and II regions of MinD are required for interaction with MinC but not MinE and that the switch II region has a role in activating MinC.

摘要

MinD和MinC协同作用,形成一种由MinE进行空间调控的Z环形成高效抑制剂。MinD通过将MinC招募至细胞膜并将其靶向隔膜成分来激活MinC。为了更好地理解这种激活作用,我们分离出了minD功能缺失突变体并进行了定点诱变。这些突变中有许多阻断了MinC-MinD相互作用;然而,它们也阻止了MinD自身相互作用和膜结合,这表明它们影响核苷酸相互作用或蛋白质折叠。开关I区域(MinD结构域)的两个突变和开关II区域的一个突变对大多数MinD功能影响很小,如MinD自身相互作用、膜结合和MinE刺激;然而,它们确实消除了MinD-MinC相互作用。开关II区域的另外两个突变不影响MinC结合。进一步研究表明,其中一个突变使MinCD复合物能够靶向隔膜,但在阻断细胞分裂方面仍存在缺陷。这些结果表明,MinD的开关I和II区域是与MinC相互作用所必需的,但与MinE相互作用并非必需,并且开关II区域在激活MinC方面发挥作用。

相似文献

1
The switch I and II regions of MinD are required for binding and activating MinC.
J Bacteriol. 2004 Mar;186(5):1546-55. doi: 10.1128/JB.186.5.1546-1555.2004.
5
The bacterial cell division regulators MinD and MinC form polymers in the presence of nucleotide.
FEBS Lett. 2015 Jan 16;589(2):201-6. doi: 10.1016/j.febslet.2014.11.047. Epub 2014 Dec 10.
9
MinC/MinD copolymers are not required for Min function.
Mol Microbiol. 2015 Dec;98(5):895-909. doi: 10.1111/mmi.13164. Epub 2015 Sep 25.
10
Mapping the MinE site involved in interaction with the MinD division site selection protein of Escherichia coli.
J Bacteriol. 2003 Aug;185(16):4948-55. doi: 10.1128/JB.185.16.4948-4955.2003.

引用本文的文献

1
Localization, Assembly, and Activation of the Escherichia coli Cell Division Machinery.
EcoSal Plus. 2021 Dec 15;9(2):eESP00222021. doi: 10.1128/ecosalplus.ESP-0022-2021. Epub 2021 Dec 13.
2
The E. coli MinCDE system in the regulation of protein patterns and gradients.
Cell Mol Life Sci. 2019 Nov;76(21):4245-4273. doi: 10.1007/s00018-019-03218-x. Epub 2019 Jul 17.
4
The Yeast Nbp35-Cfd1 Cytosolic Iron-Sulfur Cluster Scaffold Is an ATPase.
J Biol Chem. 2015 Sep 25;290(39):23793-802. doi: 10.1074/jbc.M115.667022. Epub 2015 Jul 20.
5
MinCD cell division proteins form alternating copolymeric cytomotive filaments.
Nat Commun. 2014 Dec 15;5:5341. doi: 10.1038/ncomms6341.
6
Emerging facets of plastid division regulation.
Planta. 2013 Feb;237(2):389-98. doi: 10.1007/s00425-012-1743-6. Epub 2012 Sep 11.
7
The product of tadZ, a new member of the parA/minD superfamily, localizes to a pole in Aggregatibacter actinomycetemcomitans.
Mol Microbiol. 2012 Feb;83(4):694-711. doi: 10.1111/j.1365-2958.2011.07955.x. Epub 2012 Jan 13.
8
9
Functional conservation of the MIN plastid division homologues of Chlamydomonas reinhardtii.
Planta. 2008 May;227(6):1199-211. doi: 10.1007/s00425-008-0692-6. Epub 2008 Feb 13.
10
Plastid division: evolution, mechanism and complexity.
Ann Bot. 2007 Apr;99(4):565-79. doi: 10.1093/aob/mcl249. Epub 2006 Nov 30.

本文引用的文献

1
The MinD membrane targeting sequence is a transplantable lipid-binding helix.
J Biol Chem. 2003 Oct 10;278(41):40050-6. doi: 10.1074/jbc.M306876200. Epub 2003 Jul 25.
4
Effects of phospholipid composition on MinD-membrane interactions in vitro and in vivo.
J Biol Chem. 2003 Jun 20;278(25):22193-8. doi: 10.1074/jbc.M302603200. Epub 2003 Apr 3.
5
MinD and role of the deviant Walker A motif, dimerization and membrane binding in oscillation.
Mol Microbiol. 2003 Apr;48(2):295-303. doi: 10.1046/j.1365-2958.2003.03427.x.
6
ATP-dependent interactions between Escherichia coli Min proteins and the phospholipid membrane in vitro.
J Bacteriol. 2003 Feb;185(3):735-49. doi: 10.1128/JB.185.3.735-749.2003.
9
Dynamic assembly of MinD into filament bundles modulated by ATP, phospholipids, and MinE.
Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16776-81. doi: 10.1073/pnas.262671699. Epub 2002 Dec 13.
10
Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts.
Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15693-8. doi: 10.1073/pnas.232590599. Epub 2002 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验