Suppr超能文献

Min功能并不需要MinC/MinD共聚物。

MinC/MinD copolymers are not required for Min function.

作者信息

Park Kyung-Tae, Du Shishen, Lutkenhaus Joe

机构信息

Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.

出版信息

Mol Microbiol. 2015 Dec;98(5):895-909. doi: 10.1111/mmi.13164. Epub 2015 Sep 25.

Abstract

In Escherichia coli, precise placement of the cytokinetic Z ring at midcell requires the concerted action of the three Min proteins. MinD activates MinC, an inhibitor of FtsZ, at least in part, by recruiting it to the membrane and targeting it to the Z ring, while MinE stimulates the MinD ATPase inducing an oscillation that directs MinC/MinD activity away from midcell. Recently, MinC and MinD were shown to form copolymers of alternating dimers of MinC and MinD, and it was suggested that these copolymers are the active form of MinC/MinD. Here, we use MinD mutants defective in binding MinC to generate heterodimers with wild-type MinD that are unable to form MinC/MinD copolymers. Similarly, MinC mutants defective in binding to MinD were used to generate heterodimers with wild-type MinC that are unable to form copolymers. Such heterodimers are active and in the case of MinC were shown to mediate spatial regulation of the Z ring demonstrating that MinC/MinD copolymer formation is not required. Our results are consistent with a model in which a membrane anchored MinC/MinD complex is targeted to the Z ring through the conserved carboxy tail of FtsZ leading to breakage of FtsZ filaments.

摘要

在大肠杆菌中,细胞分裂Z环精确位于细胞中部需要三种Min蛋白协同发挥作用。MinD至少部分地通过将FtsZ的抑制剂MinC招募到细胞膜并将其靶向Z环来激活MinC,而MinE刺激MinD的ATP酶活性,引发一种振荡,使MinC/MinD的活性远离细胞中部。最近研究表明,MinC和MinD可形成由MinC和MinD交替二聚体组成的共聚物,有人提出这些共聚物是MinC/MinD的活性形式。在此,我们利用与MinC结合存在缺陷的MinD突变体来生成无法形成MinC/MinD共聚物的野生型MinD异源二聚体。同样,利用与MinD结合存在缺陷的MinC突变体来生成无法形成共聚物的野生型MinC异源二聚体。此类异源二聚体具有活性,对于MinC而言,已表明其可介导Z环的空间调控,这表明MinC/MinD共聚物的形成并非必需。我们的结果与一种模型相符,即膜锚定的MinC/MinD复合物通过FtsZ保守的羧基末端靶向Z环,导致FtsZ丝断裂。

相似文献

1
MinC/MinD copolymers are not required for Min function.
Mol Microbiol. 2015 Dec;98(5):895-909. doi: 10.1111/mmi.13164. Epub 2015 Sep 25.
2
MinC and FtsZ mutant analysis provides insight into MinC/MinD-mediated Z ring disassembly.
J Biol Chem. 2018 Apr 20;293(16):5834-5846. doi: 10.1074/jbc.M117.815894. Epub 2018 Feb 2.
5
MinCD cell division proteins form alternating copolymeric cytomotive filaments.
Nat Commun. 2014 Dec 15;5:5341. doi: 10.1038/ncomms6341.
7
Differences in MinC/MinD sensitivity between polar and internal Z rings in Escherichia coli.
J Bacteriol. 2011 Jan;193(2):367-76. doi: 10.1128/JB.01095-10. Epub 2010 Nov 19.
9
Degradation of MinD oscillator complexes by Escherichia coli ClpXP.
J Biol Chem. 2021 Jan-Jun;296:100162. doi: 10.1074/jbc.RA120.013866. Epub 2020 Dec 10.
10
The bacterial cell division regulators MinD and MinC form polymers in the presence of nucleotide.
FEBS Lett. 2015 Jan 16;589(2):201-6. doi: 10.1016/j.febslet.2014.11.047. Epub 2014 Dec 10.

引用本文的文献

1
Building the Bacterial Divisome at the Septum.
Subcell Biochem. 2024;104:49-71. doi: 10.1007/978-3-031-58843-3_4.
2
Insights into the assembly and regulation of the bacterial divisome.
Nat Rev Microbiol. 2024 Jan;22(1):33-45. doi: 10.1038/s41579-023-00942-x. Epub 2023 Jul 31.
3
Degradation of MinD oscillator complexes by Escherichia coli ClpXP.
J Biol Chem. 2021 Jan-Jun;296:100162. doi: 10.1074/jbc.RA120.013866. Epub 2020 Dec 10.
4
The E. coli MinCDE system in the regulation of protein patterns and gradients.
Cell Mol Life Sci. 2019 Nov;76(21):4245-4273. doi: 10.1007/s00018-019-03218-x. Epub 2019 Jul 17.
5
Cryo-EM structure of the MinCD copolymeric filament from Pseudomonas aeruginosa at 3.1 Å resolution.
FEBS Lett. 2019 Aug;593(15):1915-1926. doi: 10.1002/1873-3468.13471. Epub 2019 Jun 14.
7
The cell division protein MinD from dominates the assembly of the MinC-MinD copolymers.
J Biol Chem. 2018 May 18;293(20):7786-7795. doi: 10.1074/jbc.RA117.001513. Epub 2018 Apr 2.
8
MinC and FtsZ mutant analysis provides insight into MinC/MinD-mediated Z ring disassembly.
J Biol Chem. 2018 Apr 20;293(16):5834-5846. doi: 10.1074/jbc.M117.815894. Epub 2018 Feb 2.
10
Structural Insights into Protein-Protein Interactions Involved in Bacterial Cell Wall Biogenesis.
Antibiotics (Basel). 2016 Apr 28;5(2):14. doi: 10.3390/antibiotics5020014.

本文引用的文献

1
MinCD cell division proteins form alternating copolymeric cytomotive filaments.
Nat Commun. 2014 Dec 15;5:5341. doi: 10.1038/ncomms6341.
2
The bacterial cell division regulators MinD and MinC form polymers in the presence of nucleotide.
FEBS Lett. 2015 Jan 16;589(2):201-6. doi: 10.1016/j.febslet.2014.11.047. Epub 2014 Dec 10.
4
SlmA antagonism of FtsZ assembly employs a two-pronged mechanism like MinCD.
PLoS Genet. 2014 Jul 31;10(7):e1004460. doi: 10.1371/journal.pgen.1004460. eCollection 2014 Jul.
6
MinCDE exploits the dynamic nature of FtsZ filaments for its spatial regulation.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):E1192-200. doi: 10.1073/pnas.1317764111. Epub 2014 Mar 18.
7
MinC protein shortens FtsZ protofilaments by preferentially interacting with GDP-bound subunits.
J Biol Chem. 2013 Aug 23;288(34):24625-35. doi: 10.1074/jbc.M113.483222. Epub 2013 Jul 12.
8
Surfing biological surfaces: exploiting the nucleoid for partition and transport in bacteria.
Mol Microbiol. 2012 Nov;86(3):513-23. doi: 10.1111/mmi.12017. Epub 2012 Sep 19.
9
Bacterial cytokinesis: From Z ring to divisome.
Cytoskeleton (Hoboken). 2012 Oct;69(10):778-90. doi: 10.1002/cm.21054. Epub 2012 Aug 30.
10
The ParA/MinD family puts things in their place.
Trends Microbiol. 2012 Sep;20(9):411-8. doi: 10.1016/j.tim.2012.05.002. Epub 2012 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验