Schrader Laura A, Perrett Stephen P, Ye Lan, Friedlander Michael J
Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, 1719 Sixth Avenue South, Birmingham, AL 35294, USA.
J Neurophysiol. 2004 Jun;91(6):2747-64. doi: 10.1152/jn.00908.2003. Epub 2004 Feb 18.
Regulation of the efficacy of synaptic transmission by activity-dependent processes has been implicated in learning and memory as well as in developmental processes. We previously described transient potentiation of excitatory synapses onto layer 2/3 pyramidal neurons in the visual cortex that is induced by coincident presynaptic stimulation and postsynaptic depolarization. In the adult visual cortex, activation of N-methyl-d-aspartate (NMDA) glutamate receptors is necessary to induce this plasticity. These receptors act as coincidence detectors, sensing presynaptic glutamate release and postsynaptic depolarization, and cause an influx of Ca(2+) that is necessary for the potentiation. In the neurons of the neonatal visual cortex, on the other hand, coincident presynaptic stimulation and postsynaptic depolarization induce stable long-term potentiation (LTP). In addition, reduced but significant LTP can be induced in many neurons in the presence of the NMDA receptor (NMDAR) antagonist, 2-amino-5-phosphonovaleric acid despite the Ca(2+) requirement. Therefore there must be an alternative postsynaptic Ca(2+) source and coincidence detection mechanism linked to the LTP induction mechanism in the neonatal cortex operating in addition to NMDARs. In this study, we find that in layer 2/3 pyramidal neurons, release of Ca(2+) from inositol trisphosphate (InsP(3)) receptor-mediated intracellular stores and influx through voltage-gated Ca(2+) channels (VGCCs) provide alternative postsynaptic Ca(2+) sources. We hypothesize that InsP(3)Rs are coincidence detectors, sensing presynaptic glutamate release through linkage with group I metabotropic glutamate receptors (mGluRs), and depolarization, through VGCCs. We also find that the downstream protein kinases, PKA and PKC, have a role in potentiation in layer 2/3 pyramidal neurons of the neonatal visual cortex.
依赖活动的过程对突触传递效能的调节与学习、记忆以及发育过程有关。我们之前描述过,在视觉皮层第2/3层锥体神经元上,由突触前刺激和突触后去极化同时发生所诱导的兴奋性突触的短暂增强。在成年视觉皮层中,N-甲基-D-天冬氨酸(NMDA)谷氨酸受体的激活对于诱导这种可塑性是必要的。这些受体作为巧合探测器,感知突触前谷氨酸释放和突触后去极化,并导致Ca(2+)内流,这是增强所必需的。另一方面,在新生视觉皮层的神经元中,突触前刺激和突触后去极化同时发生会诱导稳定的长时程增强(LTP)。此外,可以在许多神经元中诱导出减弱但显著的LTP,尽管存在Ca(2+)需求,但在NMDA受体(NMDAR)拮抗剂2-氨基-5-磷酸缬氨酸存在的情况下。因此,除了NMDARs之外,在新生皮层中必定存在一种与LTP诱导机制相关的替代性突触后Ca(2+)来源和巧合检测机制。在本研究中,我们发现在第2/3层锥体神经元中,肌醇三磷酸(InsP(3))受体介导的细胞内钙库释放Ca(2+)以及通过电压门控钙通道(VGCCs)内流提供了替代性突触后Ca(2+)来源。我们假设InsP(3)Rs是巧合探测器,通过与I组代谢型谷氨酸受体(mGluRs)的联系感知突触前谷氨酸释放,并通过VGCCs感知去极化。我们还发现,下游蛋白激酶PKA和PKC在新生视觉皮层第2/3层锥体神经元的增强中起作用。