Le Ray Didier, Fernández De Sevilla David, Belén Porto Ana, Fuenzalida Marco, Buño Washington
Instituto Cajal, CSIC, Madrid, Spain.
Hippocampus. 2004;14(8):1011-25. doi: 10.1002/hipo.20021.
The induction threshold, and the magnitude and direction of changes in synaptic plasticity may depend on the previous history of neuronal activity. This phenomenon, termed "metaplasticity," could play an important role in integration processes by coordinating the modulation of synapses. Although metaplasticity has been analyzed extensively, its underlying cellular mechanisms remain largely unknown. Using in vitro electrophysiological and computer simulation approaches, we investigated the contribution of the slow Ca2+-dependent afterhyperpolarization (sAHP) in the metaplastic control of the induction of long-term potentiation (LTP) at convergent CA3-CA1 pyramidal neuron synapses. We report that classical conditioning protocols may lead to the simultaneous induction of a sustained homosynaptic LTP and a potentiation of the sAHP that endured approximately 1 h. The sAHP potentiation dramatically altered the spike responses of the CA1 pyramidal neuron. Of particular interest was the reduction of the CA1 neuron excitability and, consequently, of the capacity of a nonpotentiated synaptic input to elicit spikes while the sAHP was potentiated. This reduction in excitability temporarily prevented nonpotentiated synaptic inputs to exhibit an LTP induced by presynaptic tetanization. This metaplasticity was strongly resistant to increases in the magnitude of synaptic tetanization protocols. We propose that this heterosynaptic metaplasticity, mediated by intrinsic cellular mechanisms, triggered by brief periods of activity, and relying on changes of a slow Ca2+-activated K+ current, may contribute to adjusting the efficacy of synaptic connections and shaping network behavior to regulate integration processes.
突触可塑性变化的诱导阈值、幅度和方向可能取决于神经元活动的既往历史。这种现象被称为“元可塑性”,它可能通过协调突触的调制在整合过程中发挥重要作用。尽管元可塑性已被广泛分析,但其潜在的细胞机制在很大程度上仍不清楚。我们使用体外电生理和计算机模拟方法,研究了慢钙依赖性超极化后电位(sAHP)在汇聚型CA3-CA1锥体神经元突触长时程增强(LTP)诱导的元可塑性控制中的作用。我们报告,经典条件反射方案可能导致持续的同突触LTP和持续约1小时的sAHP增强同时诱导。sAHP增强显著改变了CA1锥体神经元的动作电位反应。特别值得关注的是,在sAHP增强时,CA1神经元兴奋性降低,因此,未增强的突触输入引发动作电位的能力也降低。兴奋性的这种降低暂时阻止了未增强的突触输入表现出由突触前强直刺激诱导的LTP。这种元可塑性对突触强直刺激方案幅度的增加具有很强的抗性。我们提出,这种由内在细胞机制介导、由短暂活动期触发并依赖于慢钙激活钾电流变化的异突触元可塑性,可能有助于调整突触连接的效能并塑造网络行为以调节整合过程。