Wang W, Lee T, Kamdar M, Reed M A, Stewart M P, Hwang J J, Tour J M
Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520, USA.
Ann N Y Acad Sci. 2003 Dec;1006:36-47. doi: 10.1196/annals.1292.002.
Direct assembly of molecules onto silicon surfaces is of particular interest for potential employment in hybrid organic-semiconductor devices. In the study we report here, aryl diazonium salts were used to assemble covalently bound molecular groups on a hydride-passivated, oxide-free n-type Si(111) surface. The reaction of 4-(trimethylsilylethynyl)benzenediazonium tetrafluoroborate generates a molecular layer of 4-(trimethylsilylethynyl)phenylene (TMS-EP) on the n++-Si(111) surface. The monolayer modifies the electrical properties of the interface and exhibits nonlinear current-voltage characteristics, as compared with the ohmic behavior observed from metal-n++-Si(111) junctions. The result of current-voltage measurements at variable temperatures (from 300 to 10 K) on samples made with the TMS-EP molecule does not show significant thermally-activated transport, indicating that tunneling is the dominant transport mechanism. The measured data is compared to a tunneling model.
将分子直接组装到硅表面对于在混合有机半导体器件中的潜在应用特别有意义。在我们这里报道的研究中,芳基重氮盐被用于在氢化物钝化、无氧化物的n型Si(111)表面上组装共价键合的分子基团。四氟硼酸4-(三甲基甲硅烷基乙炔基)苯重氮盐的反应在n++-Si(111)表面生成了4-(三甲基甲硅烷基乙炔基)亚苯基(TMS-EP)的分子层。与从金属-n++-Si(111)结观察到的欧姆行为相比,该单分子层改变了界面的电学性质并表现出非线性电流-电压特性。对用TMS-EP分子制成的样品在可变温度(从300到10 K)下进行的电流-电压测量结果没有显示出明显的热激活传输,这表明隧穿是主要的传输机制。将测量数据与隧穿模型进行了比较。