Wang Wenyong, Scott Adina, Gergel-Hackett Nadine, Hacker Christina A, Janes David B, Richter Curt A
Semiconductor Electronics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
Nano Lett. 2008 Feb;8(2):478-84. doi: 10.1021/nl0725289. Epub 2008 Jan 12.
Molecular electronics has drawn significant attention for nanoelectronic and sensing applications. A hybrid technology where molecular devices are integrated with traditional semiconductor microelectronics is a particularly promising approach for these applications. Key challenges in this area include developing devices in which the molecular integrity is preserved, developing in situ characterization techniques to probe the molecules within the completed devices, and determining the physical processes that influence carrier transport. In this study, we present the first experimental report of inelastic electron tunneling spectroscopy of integrated metal-molecule-silicon devices with molecules assembled directly to silicon contacts. The results provide direct experimental confirmation that the chemical integrity of the monolayer is preserved and that the molecules play a direct role in electronic conduction through the devices. Spectra obtained under varying measurement conditions show differences related to the silicon electrode, which can provide valuable information about the physics influencing carrier transport in these molecule/Si hybrid devices.
分子电子学在纳米电子学和传感应用方面已引起了广泛关注。将分子器件与传统半导体微电子学集成的混合技术,对于这些应用而言是一种特别有前景的方法。该领域的关键挑战包括开发能够保持分子完整性的器件、开发原位表征技术以探测完整器件内的分子,以及确定影响载流子传输的物理过程。在本研究中,我们首次给出了将分子直接组装到硅触点上的集成金属-分子-硅器件的非弹性电子隧穿谱的实验报告。结果提供了直接的实验证据,证明单分子层的化学完整性得以保持,并且分子在通过器件的电子传导中发挥了直接作用。在不同测量条件下获得的光谱显示出与硅电极相关的差异,这可为影响这些分子/硅混合器件中载流子传输的物理特性提供有价值的信息。