Catley Matthew C, Cambridge Lisa M, Nasuhara Yasuyuki, Ito Kazuhiro, Chivers Joanna E, Beaton Andrew, Holden Neil S, Bergmann Martin W, Barnes Peter J, Newton Robert
Department of Thoracic Medicine, National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, United Kingdom.
J Biol Chem. 2004 Apr 30;279(18):18457-66. doi: 10.1074/jbc.M400765200. Epub 2004 Feb 19.
In pulmonary A549 cells, the protein kinase C (PKC) inhibitor, Ro 31-8220, and the phosphotidylcholine-specific phospholipase C inhibitor, D609, prevent NF-kappaB-dependent transcription, yet NF-kappaB DNA binding is unaffected (Bergmann, M., Hart, L., Lindsay, M., Barnes, P. J., and Newton, R. (1998) J. Biol. Chem. 273, 6607-6610). We now show that this effect also occurs in BEAS-2B bronchial epithelial cells as well as with other PKC inhibitors (Gö 6976, GF109203X, and calphostin C) in A549 cells. Similarly, phorbol ester, a diacylglycerol mimetic, activates NF-kappaB-dependent transcription and potentiates tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB-dependent transcription, yet unlike TNFalpha, poorly activates IkappaB kinase (IKK) activity, IkappaBalpha degradation, or NF-kappaB DNA binding in both A549 and BEAS-2B cells. As phorbol ester-induced NF-kappaB-dependent transcription was relatively insensitive to the proteasome inhibitor, MG-132, PKC may affect NF-kappaB-dependent transcription via mechanisms other than the core IKK-IkappaB pathway. This is supported by Gal4 one hybrid analysis of p65/RelA transactivation, which was potentiated by TNFalpha and phorbol ester and was inhibited by Ro 31-8220 and D609. Additionally, a number of PKC isoforms, particularly the novel isoform PKCepsilon, induced p65/RelA transactivation. Phosphorylation of p65/RelA and cAMP-responsive element-binding protein (CREB)-binding protein (CBP) was increased by TNFalpha treatment and, in the case of CBP, was prevented by Ro 31-8220 or D609. However, p65/RelA-CBP interactions were unaffected by either compound. As this effect was not limited to NF-kappaB, but was a more general feature of inducible gene transcription, we suggest PKC isoforms may provide a point of intervention in diseases such as inflammation, or cancer, where activated gene expression is prominent.
在肺A549细胞中,蛋白激酶C(PKC)抑制剂Ro 31 - 8220和磷脂酰胆碱特异性磷脂酶C抑制剂D609可阻止核因子κB(NF - κB)依赖性转录,但NF - κB与DNA的结合不受影响(伯格曼,M.,哈特,L.,林赛,M.,巴恩斯,P. J.,以及牛顿,R.(1998年)《生物化学杂志》273卷,6607 - 6610页)。我们现在表明,这种效应在BEAS - 2B支气管上皮细胞中也会出现,并且在A549细胞中与其他PKC抑制剂(Gö 6976、GF109203X和钙泊三醇C)共同作用时也会出现。同样,佛波酯,一种二酰基甘油模拟物,可激活NF - κB依赖性转录并增强肿瘤坏死因子α(TNFα)诱导的NF - κB依赖性转录,但与TNFα不同的是,它在A549和BEAS - 2B细胞中对IκB激酶(IKK)活性、IκBα降解或NF - κB与DNA的结合激活作用较弱。由于佛波酯诱导的NF - κB依赖性转录对蛋白酶体抑制剂MG - 132相对不敏感,PKC可能通过核心IKK - IκB途径以外的机制影响NF - κB依赖性转录。这一观点得到了对p65/RelA反式激活的Gal4单杂交分析的支持,该分析表明TNFα和佛波酯可增强其活性,而Ro 31 - 8220和D609可抑制其活性。此外,一些PKC亚型,特别是新型亚型PKCε,可诱导p65/RelA反式激活。TNFα处理可增加p65/RelA和环磷酸腺苷反应元件结合蛋白(CREB)结合蛋白(CBP)的磷酸化,就CBP而言,Ro 31 - 8220或D609可阻止其磷酸化。然而,这两种化合物对p65/RelA - CBP相互作用均无影响。由于这种效应并不局限于NF - κB,而是诱导型基因转录更为普遍的特征,我们认为PKC亚型可能为炎症或癌症等疾病提供干预靶点,在这些疾病中,激活的基因表达较为突出。