Guillemot F, Prima F, Bareille R, Gordin D, Gloriant T, Porté-Durrieu M C, Ansel D, Baquey Ch
Biomatériaux et Reparation Tissulaire, INSERM U-443, Bordeaux, France.
Med Biol Eng Comput. 2004 Jan;42(1):137-41. doi: 10.1007/BF02351023.
Parallel to the biofunctionalisation of existing materials, innovation in biomaterials engineering has led to the specific design of titanium alloys for medical applications. Studies of the biological behaviour of metallic elements have shown that the composition and structure of the material should be carefully tailored to minimise adverse body reactions and to enhance implant longevity, respectively. Consequently, interest has focused on a new family of titanium alloys: Ti-6Mo-3Fe-5Ta, Ti-4Mo-2Fe-5Ta and Ti-6Mo-3Fe-5Zr-5Hf alloys. The non-toxicity of the specially designed titanium alloys compared with osteoblastic cells has been ascertained using MTT and RN tests. In addition, phase transformations upon thermal processing have been investigated, with comparison with a well-defined beta titanium alloy. Optimum thermal processing windows (above 550 degrees C) have been designed to generate a stable and nanostructured alpha phase from the isothermal omega phase that precipitates in a low temperature range (150-350 degrees C). The generation of such nanostructured microstructures should provide a promising opportunity to investigate tissue-biomaterial interactions at the scale of biomolecules such as proteins.
与现有材料的生物功能化并行,生物材料工程领域的创新已促成了用于医学应用的钛合金的特定设计。对金属元素生物学行为的研究表明,材料的成分和结构应经过精心调整,以分别尽量减少对身体的不良反应并提高植入物的使用寿命。因此,人们的兴趣集中在一类新型钛合金上:Ti-6Mo-3Fe-5Ta、Ti-4Mo-2Fe-5Ta和Ti-6Mo-3Fe-5Zr-5Hf合金。通过MTT和RN测试已确定了这些特殊设计的钛合金与成骨细胞相比的无毒性。此外,还研究了热加工过程中的相变,并与一种明确的β钛合金进行了比较。已设计出最佳热加工窗口(高于550摄氏度),以便从在低温范围(150 - 350摄氏度)析出的等温ω相中生成稳定且具有纳米结构的α相。这种纳米结构微观组织的生成应为在蛋白质等生物分子尺度上研究组织与生物材料的相互作用提供一个有前景的机会。