Nicula R, Lüthen F, Stir M, Nebe B, Burkel E
University of Rostock, Institute of Physics, August-Bebel-Str. 55, 18055 Rostock, Germany.
Biomol Eng. 2007 Nov;24(5):564-7. doi: 10.1016/j.bioeng.2007.08.008. Epub 2007 Aug 7.
The reason for the extended use of titanium and its alloys as implant biomaterials stems from their lower elastic modulus, their superior biocompatibility and improved corrosion resistance compared to the more conventional stainless steel and cobalt-based alloys [Niinomi, M., Hattori, T., Niwa, S., 2004. Material characteristics and biocompatibility of low rigidity titanium alloys for biomedical applications. In: Jaszemski, M.J., Trantolo, D.J., Lewandrowski, K.U., Hasirci, V., Altobelli, D.E., Wise, D.L. (Eds.), Biomaterials in Orthopedics. Marcel Dekker Inc., New York, pp. 41-62]. Nanostructured titanium-based biomaterials with tailored porosity are important for cell-adhesion, viability, differentiation and growth. Newer technologies like foaming or low-density core processing were recently used for the surface modification of titanium alloy implant bodies to stimulate bone in-growth and improve osseointegration and cell-adhesion, which in turn play a key role in the acceptance of the implants. We here report preliminary results concerning the synthesis of mesoporous titanium alloy bodies by spark plasma sintering. Nanocrystalline cp Ti, Ti-6Al-4V, Ti-Al-V-Cr and Ti-Mn-V-Cr-Al alloy powders were prepared by high-energy wet-milling and sintered to either full-density (cp Ti, Ti-Al-V) or uniform porous (Ti-Al-V-Cr, Ti-Mn-V-Cr-Al) bulk specimens by field-assisted spark plasma sintering (FAST/SPS). Cellular interactions with the porous titanium alloy surfaces were tested with osteoblast-like human MG-63 cells. Cell morphology was investigated by scanning electron microscopy (SEM). The SEM analysis results were correlated with the alloy chemistry and the topographic features of the surface, namely porosity and roughness.
钛及其合金作为植入生物材料被广泛应用的原因在于,与传统的不锈钢和钴基合金相比,它们具有更低的弹性模量、更优异的生物相容性和更好的耐腐蚀性[Niinomi, M., Hattori, T., Niwa, S., 2004. 用于生物医学应用的低刚度钛合金的材料特性和生物相容性。载于:Jaszemski, M.J., Trantolo, D.J., Lewandrowski, K.U., Hasirci, V., Altobelli, D.E., Wise, D.L.(编),《骨科生物材料》。马塞尔·德克尔公司,纽约,第41 - 62页]。具有定制孔隙率的纳米结构钛基生物材料对于细胞黏附、活力、分化和生长非常重要。诸如发泡或低密度芯部加工等新技术最近被用于钛合金植入体的表面改性,以刺激骨向内生长并改善骨整合和细胞黏附,而这反过来又在植入体的接受过程中起着关键作用。我们在此报告关于通过放电等离子烧结合成介孔钛合金体的初步结果。通过高能湿磨制备了纳米晶纯钛、Ti - 6Al - 4V、Ti - Al - V - Cr和Ti - Mn - V - Cr - Al合金粉末,并通过场辅助放电等离子烧结(FAST/SPS)将其烧结成全密度(纯钛、Ti - Al - V)或均匀多孔(Ti - Al - V - Cr、Ti - Mn - V - Cr - Al)块状试样。用人成骨样MG - 63细胞测试了细胞与多孔钛合金表面的相互作用。通过扫描电子显微镜(SEM)研究细胞形态。将SEM分析结果与合金化学成分以及表面的形貌特征(即孔隙率和粗糙度)相关联。