Wilms Marcus, Eger Marcus, Schanze Thomas, Eckhorn Reinhard
Institute of Neurophysics, Philipps-University Marburg, 35032 Marburg, Germany.
Vis Neurosci. 2003 Sep-Oct;20(5):543-55. doi: 10.1017/s0952523803205083.
Blinds with receptor degeneration can perceive localized phosphenes in response to focal electrical epi-retinal stimuli. To avoid extensive basic stimulation tests in human patients, we developed techniques for estimating visual spatial resolution in anesthetized cats. Electrical epi-retinal and visual stimulation was combined with multiple-site retinal and cortical microelectrode recordings of local field potentials (LFPs) from visual areas 17 and 18. Classical visual receptive fields were characterized for retinal and cortical recording sites using multifocal visual stimulation combined with stimulus-response cross-correlation. We estimated visual spatial resolution from the size of the cortical activation profiles in response to single focal stimuli. For comparison, we determined activation profiles in response to visual stimuli at the same retinal location. Activation profiles were single peaked or multipeaked. In multipeaked profiles, the peak locations coincided with discontinuities in cortical retinotopy. Location and width of cortical activation profiles were distinct for retinal stimulation sites. On average, the activation profiles had a size of 1.28 +/- 0.03 mm cortex. Projected to visual space this corresponds to a spatial resolution of 1.49 deg +/- 0.04 deg visual angle. Best resolutions were 0.5 deg at low and medium stimulation currents corresponding to a visus of 1/30. Higher stimulation currents caused lower spatial, but higher temporal resolution (up to 70 stimuli/s). In analogy to the receptive-field concept in visual space, we defined and characterized electrical receptive fields. As our estimates of visual resolutions are conservative, we assume that a visual prosthesis will induce phosphenes at least at this resolution. This would enable visuomotor coordinations and object recognition in many indoor and outdoor situations of daily life.
患有受体退化的盲人在受到局部视网膜上电刺激时能够感知局部光幻视。为了避免在人类患者中进行广泛的基础刺激测试,我们开发了在麻醉猫中估计视觉空间分辨率的技术。视网膜上电刺激和视觉刺激与来自视觉区域17和18的局部场电位(LFP)的多部位视网膜和皮质微电极记录相结合。使用多焦点视觉刺激结合刺激 - 反应互相关来表征视网膜和皮质记录部位的经典视觉感受野。我们根据对单个局部刺激的皮质激活轮廓的大小来估计视觉空间分辨率。为了进行比较,我们确定了在相同视网膜位置对视觉刺激的激活轮廓。激活轮廓为单峰或多峰。在多峰轮廓中,峰值位置与皮质视网膜拓扑结构中的不连续处重合。视网膜刺激部位的皮质激活轮廓的位置和宽度是不同的。平均而言,激活轮廓在皮质上的大小为(1.28 \pm 0.03)毫米。投影到视觉空间中,这对应于(1.49^{\circ} \pm 0.04^{\circ})视角的空间分辨率。在对应于视力为(1/30)的低和中等刺激电流下,最佳分辨率为(0.5^{\circ})。更高的刺激电流导致空间分辨率降低,但时间分辨率提高(高达70次刺激/秒)。类似于视觉空间中的感受野概念,我们定义并表征了电感受野。由于我们对视觉分辨率的估计是保守的,我们假设视觉假体至少将以这种分辨率诱导光幻视。这将使在日常生活中的许多室内和室外情况下进行视觉运动协调和物体识别成为可能。