Suppr超能文献

将信号传入大脑:通过丘脑微刺激实现视觉假体

Getting signals into the brain: visual prosthetics through thalamic microstimulation.

作者信息

Pezaris John S, Eskandar Emad N

机构信息

Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Neurosurg Focus. 2009 Jul;27(1):E6. doi: 10.3171/2009.4.FOCUS0986.

Abstract

Common causes of blindness are diseases that affect the ocular structures, such as glaucoma, retinitis pigmentosa, and macular degeneration, rendering the eyes no longer sensitive to light. The visual pathway, however, as a predominantly central structure, is largely spared in these cases. It is thus widely thought that a device-based prosthetic approach to restoration of visual function will be effective and will enjoy similar success as cochlear implants have for restoration of auditory function. In this article the authors review the potential locations for stimulation electrode placement for visual prostheses, assessing the anatomical and functional advantages and disadvantages of each. Of particular interest to the neurosurgical community is placement of deep brain stimulating electrodes in thalamic structures that has shown substantial promise in an animal model. The theory of operation of visual prostheses is discussed, along with a review of the current state of knowledge. Finally, the visual prosthesis is proposed as a model for a general high-fidelity machine-brain interface.

摘要

失明的常见原因是影响眼部结构的疾病,如青光眼、色素性视网膜炎和黄斑变性,这些疾病会使眼睛对光不再敏感。然而,视觉通路作为主要的中枢结构,在这些情况下基本未受影响。因此,人们普遍认为,基于设备的视觉功能恢复假体方法将是有效的,并且会像人工耳蜗恢复听觉功能那样取得类似的成功。在本文中,作者回顾了视觉假体刺激电极放置的潜在位置,评估了每个位置的解剖学和功能优缺点。神经外科界特别感兴趣的是在丘脑结构中放置深部脑刺激电极,这在动物模型中已显示出巨大的前景。本文讨论了视觉假体的工作原理,并综述了当前的知识状态。最后,提出将视觉假体作为通用高保真机器-大脑接口的模型。

相似文献

1
Getting signals into the brain: visual prosthetics through thalamic microstimulation.
Neurosurg Focus. 2009 Jul;27(1):E6. doi: 10.3171/2009.4.FOCUS0986.
2
3
Contemporary approaches to visual prostheses.
Mil Med Res. 2019 Jun 5;6(1):19. doi: 10.1186/s40779-019-0206-9.
4
Assessing the efficacy of visual prostheses by decoding ms-LFPs: application to retinal implants.
J Neural Eng. 2009 Apr;6(2):026007. doi: 10.1088/1741-2560/6/2/026007. Epub 2009 Mar 16.
5
Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses.
Brain Res. 2015 Jan 21;1595:51-73. doi: 10.1016/j.brainres.2014.11.020. Epub 2014 Nov 15.
6
Neural stimulation for visual rehabilitation: advances and challenges.
J Physiol Paris. 2013 Nov;107(5):421-31. doi: 10.1016/j.jphysparis.2012.10.003. Epub 2012 Nov 10.
7
[Review of visual prosthesis (I)--retinal prosthesis].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2008 Jun;25(3):734-7.
8
Prosthetic interfaces with the visual system: biological issues.
J Neural Eng. 2007 Jun;4(2):R14-31. doi: 10.1088/1741-2560/4/2/R02. Epub 2007 Mar 14.
9
Implantation and testing of subretinal film electrodes in domestic pigs.
Exp Eye Res. 2006 Feb;82(2):332-40. doi: 10.1016/j.exer.2005.07.007. Epub 2005 Aug 25.
10
Cortical Interactions between Prosthetic and Natural Vision.
Curr Biol. 2020 Jan 6;30(1):176-182.e2. doi: 10.1016/j.cub.2019.11.028. Epub 2019 Dec 26.

引用本文的文献

1
The Influence of Phosphene Synchrony in Driving Object Binding in a Simulation of Artificial Vision.
Invest Ophthalmol Vis Sci. 2023 Dec 1;64(15):5. doi: 10.1167/iovs.64.15.5.
2
Optogenetic activation of visual thalamus generates artificial visual percepts.
Elife. 2023 Oct 4;12:e90431. doi: 10.7554/eLife.90431.
3
Attitudes of potential recipients toward emerging visual prosthesis technologies.
Sci Rep. 2023 Jul 6;13(1):10963. doi: 10.1038/s41598-023-36913-8.
4
Multichannel stimulation module as a tool for animal studies on cortical neural prostheses.
Front Med Technol. 2022 Sep 13;4:927581. doi: 10.3389/fmedt.2022.927581. eCollection 2022.
7
The impact of synchronous versus asynchronous electrical stimulation in artificial vision.
J Neural Eng. 2021 Apr 27;18(5). doi: 10.1088/1741-2552/abecf1.
8
In-Vivo Microsystems: A Review.
Sensors (Basel). 2020 Sep 1;20(17):4953. doi: 10.3390/s20174953.
9
Retinal Prosthetic Approaches to Enhance Visual Perception for Blind Patients.
Micromachines (Basel). 2020 May 24;11(5):535. doi: 10.3390/mi11050535.
10
Development of visual Neuroprostheses: trends and challenges.
Bioelectron Med. 2018 Aug 13;4:12. doi: 10.1186/s42234-018-0013-8. eCollection 2018.

本文引用的文献

2
Clinical stability of a new method for fixation and explanation of epiretinal implants.
Acta Ophthalmol. 2010 Nov;88(7):e285-6. doi: 10.1111/j.1755-3768.2009.01694.x.
3
Artificial vision by direct optic nerve electrode (AV-DONE) implantation in a blind patient with retinitis pigmentosa.
J Artif Organs. 2009;12(3):206-9. doi: 10.1007/s10047-009-0467-2. Epub 2009 Sep 19.
4
Simulations of electrode placement for a thalamic visual prosthesis.
IEEE Trans Biomed Eng. 2009 Jan;56(1):172-8. doi: 10.1109/TBME.2008.2005973.
5
Intraocular epiretinal prosthesis to restore vision in blind humans.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5790-3. doi: 10.1109/IEMBS.2008.4650530.
6
Retinal prosthesis phosphene shape analysis.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:1785-8. doi: 10.1109/IEMBS.2008.4649524.
7
Current and future prospects for optoelectronic retinal prostheses.
Eye (Lond). 2009 Oct;23(10):1999-2005. doi: 10.1038/eye.2008.385. Epub 2008 Dec 19.
8
Visual prosthesis.
Perception. 2008;37(10):1529-59. doi: 10.1068/p6100.
9
Demonstration of artificial visual percepts generated through thalamic microstimulation.
Proc Natl Acad Sci U S A. 2007 May 1;104(18):7670-5. doi: 10.1073/pnas.0608563104. Epub 2007 Apr 23.
10
Real and virtual mobility performance in simulated prosthetic vision.
J Neural Eng. 2007 Mar;4(1):S92-101. doi: 10.1088/1741-2560/4/1/S11. Epub 2007 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验