Suppr超能文献

p21Ras亚硝基化的机制及一氧化氮介导的鸟嘌呤核苷酸交换动力学

Mechanism of p21Ras S-nitrosylation and kinetics of nitric oxide-mediated guanine nucleotide exchange.

作者信息

Heo Jongyun, Campbell Sharon L

机构信息

Department of Biochemistry and Biophysics, University of North Carolina, 530 Mary Ellen Jones Building, Chapel Hill, North Carolina 27599-7260, USA.

出版信息

Biochemistry. 2004 Mar 2;43(8):2314-22. doi: 10.1021/bi035275g.

Abstract

Nitric oxide (NO), a highly reactive redox molecule, can react with protein thiols and protein metal centers to regulate a multitude of physiological processes. NO has been shown to promote guanine nucleotide exchange on the critical cellular signaling protein p21Ras (Ras) by S-nitrosylation of a redox-active thiol group (Cys(118)). This increases cellular Ras-GTP levels in vivo, leading to activation of downstream signaling pathways. Yet the process by which this occurs is not clear. Although several feasible mechanisms for protein S-nitrosylation with NO and NO donating have been proposed, results obtained from our studies suggest that Ras can be S-nitrosylated by direct reaction of Cys(118) with nitrogen dioxide (NO(2)), a reaction product of NO with O(2), via a Ras thiyl-radical intermediate (Ras-S). Results from our studies also indicate that Ras Cys(118) can be S-nitrosylated by direct reaction of Cys(118) with a glutathionyl radical (GS*), a reaction product derived from homolytic cleavage of S-nitrosoglutathione (GSNO). Moreover, we present evidence that reaction of GS* with Ras generates a Ras-S* intermediate during GSNO-mediated Ras S-nitrosylation. The Ras-S() radical intermediate formed from reaction of the Ras thiol with either NO(2) or GS, in turn, reacts with NO to complete Ras S-nitrosylation. NO and GSNO modulate Ras activity by promoting guanine nucleotide dissociation from Ras. Our results suggest that formation of the Ras radical intermediate, Ras-S, may perturb interactions between Ras and its guanine nucleotide substrate, resulting in enhancement of guanine nucleotide dissociation from Ras.

摘要

一氧化氮(NO)是一种高反应性的氧化还原分子,可与蛋白质硫醇和蛋白质金属中心发生反应,以调节多种生理过程。研究表明,NO可通过对氧化还原活性硫醇基团(Cys(118))进行S-亚硝基化,促进关键细胞信号蛋白p21Ras(Ras)上的鸟嘌呤核苷酸交换。这会在体内增加细胞Ras-GTP水平,从而激活下游信号通路。然而,这一过程的发生机制尚不清楚。尽管已经提出了几种NO和供NO物质对蛋白质进行S-亚硝基化的可行机制,但我们的研究结果表明,Ras可通过Cys(118)与二氧化氮(NO(2))直接反应而发生S-亚硝基化,NO(2)是NO与O(2)的反应产物,反应经由Ras硫自由基中间体(Ras-S)。我们的研究结果还表明,Cys(118)可通过与谷胱甘肽自由基(GS)直接反应而发生S-亚硝基化,GS是亚硝基谷胱甘肽(GSNO)均裂产生的反应产物。此外,我们提供的证据表明,在GSNO介导的Ras S-亚硝基化过程中,GS与Ras反应会生成Ras-S中间体。由Ras硫醇与NO(2)或GS反应形成的Ras-S()自由基中间体,继而与NO反应,完成Ras的S-亚硝基化。NO和GSNO通过促进鸟嘌呤核苷酸从Ras上解离来调节Ras活性。我们的研究结果表明,Ras自由基中间体Ras-S*的形成可能会扰乱Ras与其鸟嘌呤核苷酸底物之间的相互作用,从而导致鸟嘌呤核苷酸从Ras上的解离增强。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验