Kouzminova Elena A, Kuzminov Andrei
Department of Microbiology, University of Illinois at Urbana-Champaign, B103 C & LSL, 601 South Goodwin Ave., Urbana, IL 61801-3709, USA.
Mol Microbiol. 2004 Mar;51(5):1279-95. doi: 10.1111/j.1365-2958.2003.03924.x.
Recent findings suggest that DNA nicks stimulate homologous recombination by being converted into double-strand breaks, which are mended by RecA-catalysed recombinational repair and are lethal if not repaired. Hyper-rec mutants, in which DNA nicks become detectable, are synthetic-lethal with recA inactivation, substantiating the idea. Escherichia coli dut mutants are the only known hyper-recs in which presumed nicks in DNA do not cause inviability with recA, suggesting that nicks stimulate homologous recombination directly. Here, we show that dut recA mutants are synthetic-lethal; specifically, dut mutants depend on the RecBC-RuvABC recombinational repair pathway that mends double-strand DNA breaks. Although induced for SOS, dut mutants are not rescued by full SOS induction if RecA is not available, suggesting that recombinational rather than regulatory functions of RecA are needed for their viability. We also detected chromosomal fragmentation in dut rec mutants, indicating double-strand DNA breaks. Both the synthetic lethality and chromosomal fragmentation of dut rec mutants are suppressed by preventing uracil excision via inactivation of uracil DNA-glycosylase or by preventing dUTP production via inactivation of dCTP deaminase. We suggest that nicks become substrates for recombinational repair after being converted into double-strand DNA breaks.
最近的研究结果表明,DNA切口通过转化为双链断裂来刺激同源重组,双链断裂由RecA催化的重组修复进行修复,若未修复则具有致死性。在超重组突变体中,DNA切口变得可检测到,这些突变体与recA失活具有合成致死性,证实了这一观点。大肠杆菌dut突变体是唯一已知的超重组突变体,其中DNA中假定的切口不会导致与recA相关的不可存活性,这表明切口直接刺激同源重组。在此,我们表明dut recA突变体具有合成致死性;具体而言,dut突变体依赖于修复双链DNA断裂的RecBC-RuvABC重组修复途径。尽管诱导了SOS反应,但如果没有RecA,dut突变体不会因完全的SOS诱导而得到拯救,这表明RecA的重组功能而非调节功能对其生存能力是必需的。我们还在dut rec突变体中检测到染色体片段化,表明存在双链DNA断裂。通过使尿嘧啶DNA糖基化酶失活来防止尿嘧啶切除或通过使dCTP脱氨酶失活来防止dUTP产生,均可抑制dut rec突变体的合成致死性和染色体片段化。我们认为,切口在转化为双链DNA断裂后成为重组修复的底物。