Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
DNA Repair (Amst). 2019 Mar;75:1-17. doi: 10.1016/j.dnarep.2019.01.002. Epub 2019 Jan 16.
Thymine deprivation in thyA mutant E. coli causes thymineless death (TLD) and is the mode of action of popular antibacterial and anticancer drugs, yet the mechanisms of TLD are still unclear. TLD comprises three defined phases: resistance, rapid exponential death (RED) and survival, with the nature of the resistance phase and of the transition to the RED phase holding key to TLD pathology. We propose that a limited source of endogenous thymine maintains replication forks through the resistance phase. When this source ends, forks undergo futile break-repair cycle during the RED phase, eventually rendering the chromosome non-functional. Two obvious sources of the endogenous thymine are degradation of broken chromosomal DNA and recruitment of thymine from stable RNA. However, mutants that cannot degrade broken chromosomal DNA or lack ribo-thymine, instead of shortening the resistance phase, deepen the RED phase, meaning that only a small fraction of T-starved cells tap into these sources. Interestingly, the substantial chromosomal DNA accumulation during the resistance phase is negated during the RED phase, suggesting futile cycle of incorporation and excision of wrong nucleotides. We tested incorporation of dU or rU, finding some evidence for both, but DNA-dU incorporation accelerates TLD only when intracellular [dUTP] is increased by the dut mutation. In the dut ung mutant, with increased DNA-dU incorporation and no DNA-dU excision, replication is in fact rescued even without dT, but TLD still occurs, suggesting different mechanisms. Finally, we found that continuous DNA synthesis during thymine starvation makes chromosomal DNA increasingly single-stranded, and even the dut ung defect does not completely block this ss-gap accumulation. We propose that instability of single-strand gaps underlies the pathology of thymine starvation.
胸腺嘧啶缺乏在 thyA 突变大肠杆菌中导致胸苷缺乏性死亡 (TLD),并且是常用的抗菌和抗癌药物的作用模式,然而 TLD 的机制仍不清楚。TLD 包括三个定义明确的阶段:抗性、快速指数死亡 (RED) 和存活,抗性阶段的性质和向 RED 阶段的转变是 TLD 病理学的关键。我们提出,有限的内源性胸苷来源通过抗性阶段维持复制叉。当这个来源结束时,叉子在 RED 阶段经历无效的断裂-修复循环,最终使染色体失去功能。内源性胸苷的两个明显来源是断裂染色体 DNA 的降解和稳定 RNA 中胸腺嘧啶的募集。然而,不能降解断裂染色体 DNA 或缺乏核糖胸腺嘧啶的突变体,而不是缩短抗性阶段,加深 RED 阶段,这意味着只有一小部分 T 饥饿细胞利用这些来源。有趣的是,在抗性阶段大量积累的染色体 DNA 在 RED 阶段被否定,这表明错误核苷酸的掺入和切除是无效循环。我们测试了 dU 或 rU 的掺入,发现两者都有一些证据,但只有当 dut 突变增加细胞内 [dUTP] 时,DNA-dU 掺入才会加速 TLD。在 dut ung 突变体中,DNA-dU 掺入增加而无 DNA-dU 切除,即使没有 dT,复制实际上也得到挽救,但 TLD 仍会发生,这表明存在不同的机制。最后,我们发现,在胸腺嘧啶饥饿期间连续的 DNA 合成使染色体 DNA 变得越来越单链,即使 dut ung 缺陷也不能完全阻止这种 ss 缺口积累。我们提出,单链缺口的不稳定性是胸腺嘧啶饥饿病理学的基础。