Suppr超能文献

转染研究以探索人类疟原虫恶性疟原虫中必需的叶酸代谢和抗叶酸药物协同作用。

Transfection studies to explore essential folate metabolism and antifolate drug synergy in the human malaria parasite Plasmodium falciparum.

作者信息

Wang Ping, Wang Qi, Aspinall Tanya V, Sims Paul F G, Hyde John E

机构信息

Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, UK.

出版信息

Mol Microbiol. 2004 Mar;51(5):1425-38. doi: 10.1111/j.1365-2958.2003.03915.x.

Abstract

Folate metabolism in Plasmodium falciparum is the target of important antimalarial agents. The biosynthetic pathway converts GTP to polyglutamated derivatives of tetrahydrofolate (THF), essential cofactors for DNA synthesis. Tetrahydrofolate can also be acquired by salvage mechanisms. Using a transfection system adapted to studying this pathway, we investigated modulation of dihydropteroate synthase (DHPS) activity on parasite phenotypes. Dihydropteroate synthase incorporates p-aminobenzoate (pABA) into dihydropteroate, the precursor of dihydrofolate. We were unable to obtain viable parasites where the dhps gene had been truncated. However, parasites where the protein was full-length but mutated at two key residues and having < 10% of normal activity were viable in folate-supplemented medium. Metabolic labelling showed that these parasites could still convert pABA to polyglutamated folates, albeit at a very low level, but they could not survive on pABA supplementation alone. This degree of disablement in DHPS also abolished the synergy of the antifolate combination pyrimethamine/sulfadoxine. These data indicate that DHPS activity above a low but critical level is essential regardless of the availability of salvageable folate and formally prove the role of this enzyme in antifolate drug synergy and folate biosynthesis in vivo. However, we found no evidence of a significant role for DHPS in folate salvage. Moreover, when biosynthesis was compromised by the absence of a fully functional DHPS, the parasite was able to compensate by increasing flux through the salvage pathway.

摘要

恶性疟原虫中的叶酸代谢是重要抗疟药物的作用靶点。生物合成途径将鸟苷三磷酸(GTP)转化为四氢叶酸(THF)的多聚谷氨酸衍生物,THF是DNA合成所必需的辅因子。四氢叶酸也可通过补救机制获得。我们使用一种适用于研究该途径的转染系统,研究了二氢蝶酸合酶(DHPS)活性对寄生虫表型的调节作用。二氢蝶酸合酶将对氨基苯甲酸(pABA)掺入二氢蝶酸中,二氢蝶酸是二氢叶酸的前体。我们无法获得dhps基因被截断的存活寄生虫。然而,蛋白质全长但在两个关键残基处发生突变且活性低于正常水平10%的寄生虫在补充叶酸的培养基中能够存活。代谢标记显示,这些寄生虫仍能将pABA转化为多聚谷氨酸化叶酸,尽管水平非常低,但仅补充pABA时它们无法存活。DHPS的这种失活程度也消除了抗叶酸药物组合乙胺嘧啶/磺胺多辛的协同作用。这些数据表明,无论可挽救叶酸的可用性如何,高于低但关键水平的DHPS活性都是必不可少的,并正式证明了该酶在抗叶酸药物协同作用和体内叶酸生物合成中的作用。然而,我们没有发现DHPS在叶酸补救中起重要作用的证据。此外,当生物合成因缺乏完全功能性的DHPS而受损时,寄生虫能够通过增加补救途径的通量来进行补偿。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验