Suppr超能文献

6-丙酮酸四氢蝶呤合酶的一种非典型同源物可能为疟原虫叶酸生物合成途径中缺失的环节提供线索。

An atypical orthologue of 6-pyruvoyltetrahydropterin synthase can provide the missing link in the folate biosynthesis pathway of malaria parasites.

作者信息

Dittrich Sabine, Mitchell Sarah L, Blagborough Andrew M, Wang Qi, Wang Ping, Sims Paul F G, Hyde John E

机构信息

Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.

出版信息

Mol Microbiol. 2008 Feb;67(3):609-18. doi: 10.1111/j.1365-2958.2007.06073.x. Epub 2007 Dec 18.

Abstract

Folate metabolism in malaria parasites is a long-standing, clinical target for chemotherapy and prophylaxis. However, despite determination of the complete genome sequence of the lethal species Plasmodium falciparum, the pathway of de novo folate biosynthesis remains incomplete, as no candidate gene for dihydroneopterin aldolase (DHNA) could be identified. This enzyme catalyses the third step in the well-characterized pathway of plants, bacteria, and those eukaryotic microorganisms capable of synthesizing their own folate. Utilizing bioinformatics searches based on both primary and higher protein structures, together with biochemical assays, we demonstrate that P. falciparum cell extracts lack detectable DHNA activity, but that the parasite possesses an unusual orthologue of 6-pyruvoyltetrahydropterin synthase (PTPS), which simultaneously gives rise to two products in comparable amounts, the predominant of which is 6-hydroxymethyl-7,8-dihydropterin, the substrate for the fourth step in folate biosynthesis (catalysed by 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase; PPPK). This can provide a bypass for the missing DHNA activity and thus a means of completing the biosynthetic pathway from GTP to dihydrofolate. Supported by site-directed mutagenesis experiments, we ascribe the novel catalytic activity of the malarial PTPS to a Cys to Glu change at its active site relative to all previously characterized PTPS molecules, including that of the human host.

摘要

疟原虫中的叶酸代谢长期以来一直是化疗和预防的临床靶点。然而,尽管已测定了致死性疟原虫恶性疟原虫的完整基因组序列,但从头合成叶酸的途径仍不完整,因为尚未鉴定出二氢蝶呤醛缩酶(DHNA)的候选基因。该酶催化植物、细菌以及能够合成自身叶酸的真核微生物中已明确的途径的第三步。利用基于一级和高级蛋白质结构的生物信息学搜索以及生化分析,我们证明恶性疟原虫细胞提取物缺乏可检测到的DHNA活性,但该寄生虫拥有一种不寻常的6-丙酮酰四氢蝶呤合酶(PTPS)同源物,它同时产生两种数量相当的产物,其中主要产物是6-羟甲基-7,8-二氢蝶呤,这是叶酸生物合成第四步(由6-羟甲基-7,8-二氢蝶呤焦磷酸激酶;PPPK催化)的底物。这可以为缺失的DHNA活性提供一条旁路,从而为从鸟苷三磷酸(GTP)到二氢叶酸的生物合成途径提供一种完成方式。在定点诱变实验的支持下,我们将疟原虫PTPS的新催化活性归因于其活性位点相对于所有先前表征的PTPS分子(包括人类宿主的PTPS分子)的一个从半胱氨酸到谷氨酸的变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6709/2229834/eadd214b276e/mmi0067-0609-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验