Tsuchisaka Atsunari, Theologis Athanasios
Plant Gene Expression Center, 800 Buchanan Street, Albany, CA 94710, USA.
Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2275-80. doi: 10.1073/pnas.0308515101.
The pyridoxal phosphate-dependent enzyme, 1-aminocyclopropane-1-carboxylate synthase (ACS; EC 4.4.1.14), catalyzes the rate-limiting step in the ethylene biosynthetic pathway in plants. The Arabidopsis genome encodes nine ACS polypeptides that form eight functional (ACS2, ACS4-9, ACS11) and one nonfunctional (ACS1) homodimers. Because the enzyme is a homodimer with shared active sites, the question arises whether the various polypeptides can form functional heterodimers. Intermolecular complementation experiments in Escherichia coli by coexpressing the K278A and Y92A mutants of different polypeptides show that all of them have the capacity to heterodimerize. However, functional heterodimers are formed only among gene family members that belong to one or the other of the two phylogenetic branches. ACS7 is an exception to this rule, which forms functional heterodimers with some members of both branches when it provides the wt K278 residue. ACS1, the nonfunctional polypeptide as a homodimer, can also form functional heterodimers with members of its phylogenetic branch when its partners provide the wt K278 residue. The ACS gene family products can potentially form 45 homo- and heterodimers of which 25 are functional. Bimolecular fluorescence complementation and biochemical coaffinity purification assays show that the inactivity of certain heterodimers is not due to the absence of heterodimerization but rather to structural restraint(s) that prevents the shared active sites from being functional. We propose that functional heterodimerization enhances the isozyme diversity of the ACS gene family and provides physiological versatility by being able to operate in a broad gradient of S-adenosylmethionine concentration in various cells/tissues during plant growth and development. Nonfunctional heterodimerization may also play a regulatory role during the plant life cycle.
磷酸吡哆醛依赖性酶1-氨基环丙烷-1-羧酸合酶(ACS;EC 4.4.1.14)催化植物乙烯生物合成途径中的限速步骤。拟南芥基因组编码9种ACS多肽,它们形成8种功能性(ACS2、ACS4 - 9、ACS11)和1种无功能的(ACS1)同型二聚体。由于该酶是具有共享活性位点的同型二聚体,因此就产生了各种多肽是否能形成功能性异源二聚体的问题。通过在大肠杆菌中共表达不同多肽的K278A和Y92A突变体进行的分子间互补实验表明,它们都具有异源二聚化的能力。然而,功能性异源二聚体仅在属于两个系统发育分支中一个或另一个的基因家族成员之间形成。ACS7是此规则的一个例外,当它提供野生型K278残基时,它能与两个分支的一些成员形成功能性异源二聚体。ACS1作为同型二聚体时是无功能的多肽,当其伙伴提供野生型K278残基时,它也能与其系统发育分支的成员形成功能性异源二聚体。ACS基因家族产物可能潜在地形成45种同源和异源二聚体,其中25种是功能性的。双分子荧光互补和生化共亲和纯化分析表明,某些异源二聚体的无活性不是由于缺乏异源二聚化,而是由于结构限制阻止了共享活性位点发挥功能。我们提出,功能性异源二聚化增强了ACS基因家族的同工酶多样性,并通过能够在植物生长和发育过程中在各种细胞/组织中的广泛S-腺苷甲硫氨酸浓度梯度中发挥作用而提供生理多功能性。无功能的异源二聚化在植物生命周期中也可能起调节作用。