Department of Biology, Health and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain.
Int J Mol Sci. 2023 Mar 22;24(6):5990. doi: 10.3390/ijms24065990.
Plants are sessile organisms that face environmental threats throughout their life cycle, but increasing global warming poses an even more existential threat. Despite these unfavorable circumstances, plants try to adapt by developing a variety of strategies coordinated by plant hormones, resulting in a stress-specific phenotype. In this context, ethylene and jasmonates (JAs) present a fascinating case of synergism and antagonism. Here, Ethylene Insensitive 3/Ethylene Insensitive-Like Protein1 (EIN3/EIL1) and Jasmonate-Zim Domain (JAZs)-MYC2 of the ethylene and JAs signaling pathways, respectively, appear to act as nodes connecting multiple networks to regulate stress responses, including secondary metabolites. Secondary metabolites are multifunctional organic compounds that play crucial roles in stress acclimation of plants. Plants that exhibit high plasticity in their secondary metabolism, which allows them to generate near-infinite chemical diversity through structural and chemical modifications, are likely to have a selective and adaptive advantage, especially in the face of climate change challenges. In contrast, domestication of crop plants has resulted in change or even loss in diversity of phytochemicals, making them significantly more vulnerable to environmental stresses over time. For this reason, there is a need to advance our understanding of the underlying mechanisms by which plant hormones and secondary metabolites respond to abiotic stress. This knowledge may help to improve the adaptability and resilience of plants to changing climatic conditions without compromising yield and productivity. Our aim in this review was to provide a detailed overview of abiotic stress responses mediated by ethylene and JAs and their impact on secondary metabolites.
植物是固着生物,在其整个生命周期中都会面临环境威胁,但全球变暖的加剧构成了更大的生存威胁。尽管面临这些不利条件,植物还是通过发展各种由植物激素协调的策略来试图适应,从而产生具有特定胁迫表型的植物。在这种情况下,乙烯和茉莉酸(JAs)呈现出协同和拮抗的有趣案例。在这里,乙烯不敏感 3/乙烯不敏感样蛋白 1(EIN3/EIL1)和茉莉酸-Zim 结构域(JAZs)-分别是乙烯和 JAs 信号通路中的 MYC2,似乎充当了连接多个网络以调节应激反应的节点,包括次生代谢物。次生代谢物是多功能有机化合物,在植物的应激适应中起着至关重要的作用。那些在次生代谢中表现出高度可塑性的植物,通过结构和化学修饰可以产生近乎无限的化学多样性,它们很可能具有选择性和适应性优势,尤其是在应对气候变化挑战时。相比之下,作物植物的驯化导致了植物化学物质的多样性改变甚至丧失,随着时间的推移,它们更容易受到环境压力的影响。因此,需要深入了解植物激素和次生代谢物如何应对非生物胁迫的潜在机制。这一知识可能有助于提高植物对气候变化条件的适应性和弹性,而不会牺牲产量和生产力。我们在这篇综述中的目的是详细概述乙烯和 JAs 介导的非生物胁迫反应及其对次生代谢物的影响。