Suppr超能文献

中枢神经系统组织简单拉伸过程中微观结构运动学的建模。

Modeling of microstructural kinematics during simple elongation of central nervous system tissue.

作者信息

Bain Allison C, Shreiber David I, Meaney David F

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6392, USA.

出版信息

J Biomech Eng. 2003 Dec;125(6):798-804. doi: 10.1115/1.1632627.

Abstract

Damage to axons and glial cells in the central nervous system (CNS) white matter is a nearly universal feature of traumatic brain injury, yet it is not clear how the tissue mechanical deformations are transferred to the cellular components of the CNS. Defining how cellular deformations relate to the applied tissue deformation field can both highlight cellular populations at risk for mechanical injury, and define the fraction of cells in a specific population that will exhibit damage. In this investigation, microstructurally based models of CNS white matter were developed and tested against measured transformations of the CNS tissue microstructure under simple elongation. Results show that axons in the unstretched optic nerves were significantly wavy or undulated, where the measured axonal path length was greater than the end-to-end distance of the axon. The average undulation parameter--defined as the true axonal length divided by the end-to-end length--was 1.13. In stretched nerves, mean axonal undulations decreased with increasing applied stretch ratio (lambda)--the mean undulation values decreased to 1.06 at lambda = 1.06, 1.04 at lambda = 1.12, and 1.02 at lambda = 1.25. A model describing the gradual coupling, or tethering, of the axons to the surrounding glial cells best fit the experimental data. These modeling efforts indicate the fraction of the axonal and glial populations experiencing deformation increases with applied elongation, consistent with the observation that both axonal and glial cell injury increases at higher levels of white matter injury. Ultimately, these results can be used in conjunction with computational simulations of traumatic brain injury to aid in establishing the relative risk of cellular structures in the CNS white matter to mechanical injury.

摘要

中枢神经系统(CNS)白质中的轴突和神经胶质细胞损伤是创伤性脑损伤几乎普遍存在的特征,但尚不清楚组织机械变形是如何传递到中枢神经系统的细胞成分中的。确定细胞变形与所施加的组织变形场之间的关系,既能突出有机械损伤风险的细胞群体,又能确定特定群体中会出现损伤的细胞比例。在本研究中,开发了基于微观结构的中枢神经系统白质模型,并根据在简单拉伸下中枢神经系统组织微观结构的测量转变进行了测试。结果表明,未拉伸的视神经中的轴突明显呈波浪状或起伏状,其中测量的轴突路径长度大于轴突的端到端距离。平均起伏参数——定义为真实轴突长度除以端到端长度——为1.13。在拉伸的神经中,平均轴突起伏随着施加的拉伸比(λ)增加而减小——平均起伏值在λ = 1.06时降至1.06,在λ = 1.12时降至1.04,在λ = 1.25时降至1.02。一个描述轴突与周围神经胶质细胞逐渐耦合或束缚的模型最符合实验数据。这些建模工作表明,随着施加的伸长增加,经历变形的轴突和神经胶质细胞群体的比例增加,这与在更高水平的白质损伤时轴突和神经胶质细胞损伤均增加的观察结果一致。最终,这些结果可与创伤性脑损伤的计算模拟结合使用,以帮助确定中枢神经系统白质中细胞结构遭受机械损伤的相对风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验