Makhija Ekta P, Espinosa-Hoyos Daniela, Jagielska Anna, Van Vliet Krystyn J
BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Critical Analytics for Manufacturing Personalized-Medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, 138602, Singapore.
BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
Neurosci Lett. 2020 Jan 19;717:134673. doi: 10.1016/j.neulet.2019.134673. Epub 2019 Dec 12.
Oligodendrocytes (OL) are a subset of glial cells in the central nervous system (CNS) comprising the brain and spinal cord. The CNS environment is defined by complex biochemical and biophysical cues during development and response to injury or disease. In the last decade, significant progress has been made in understanding some of the key biophysical factors in the CNS that modulate OL biology, including their key role in myelination of neurons. Taken together, those studies offer translational implications for remyelination therapies, pharmacological research, identification of novel drug targets, and improvements in methods to generate human oligodendrocyte progenitor cells (OPCs) and OLs from donor stem cells in vitro. This review summarizes current knowledge of how various physical and mechanical cues affect OL biology and its implications for disease, therapeutic approaches, and generation of human OPCs and OLs.
少突胶质细胞(OL)是中枢神经系统(CNS,包括脑和脊髓)中神经胶质细胞的一个亚群。中枢神经系统环境在发育过程以及对损伤或疾病的反应中由复杂的生化和生物物理信号所界定。在过去十年中,人们在理解中枢神经系统中调节少突胶质细胞生物学的一些关键生物物理因素方面取得了重大进展,包括它们在神经元髓鞘形成中的关键作用。综合来看,这些研究为髓鞘再生疗法、药理学研究、新型药物靶点的鉴定以及体外从供体干细胞生成人少突胶质细胞祖细胞(OPC)和少突胶质细胞的方法改进提供了转化意义。本综述总结了关于各种物理和机械信号如何影响少突胶质细胞生物学及其对疾病、治疗方法以及人少突胶质细胞祖细胞和少突胶质细胞生成的影响的当前知识。