Suppr超能文献

Classification of prostatic carcinoma with artificial neural networks using comparative genomic hybridization and quantitative stereological data.

作者信息

Mattfeldt Torsten, Gottfried Hans-Werner, Wolter Hubertus, Schmidt Volker, Kestler Hans A, Mayer Johannes

机构信息

Department of Pathology, University of Ulm, Ulm, Germany.

出版信息

Pathol Res Pract. 2003;199(12):773-84. doi: 10.1078/0344-0338-00496.

Abstract

Staging of prostate cancer is a mainstay of treatment decisions and prognostication. In the present study, 50 pT2N0 and 28 pT3N0 prostatic adenocarcinomas were characterized by Gleason grading, comparative genomic hybridization (CGH), and histological texture analysis based on principles of stereology and stochastic geometry. The cases were classified by learning vector quantization and support vector machines. The quality of classification was tested by cross-validation. Correct prediction of stage from primary tumor data was possible with an accuracy of 74-80% from different data sets. The accuracy of prediction was similar when the Gleason score was used as input variable, when stereological data were used, or when a combination of CGH data and stereological data was used. The results of classification by learning vector quantization were slightly better than those by support vector machines. A method is briefly sketched by which training of neural networks can be adapted to unequal sample sizes per class. Progression from pT2 to pT3 prostate cancer is correlated with complex changes of the epithelial cells in terms of volume fraction, of surface area, and of second-order stereological properties. Genetically, this progression is accompanied by a significant global increase in losses and gains of DNA, and specifically by increased numerical aberrations on chromosome arms 1q, 7p, and 8p.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验