Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States of America.
PLoS One. 2013 May 15;8(5):e63364. doi: 10.1371/journal.pone.0063364. Print 2013.
Gastroenteropancreatic (GEP) neuroendocrine neoplasms (NENs) are increasing in both incidence and prevalence. A delay in correct diagnosis is common for these lesions. This reflects the absence of specific blood biomarkers to detect NENs. Measurement of the neuroendocrine secretory peptide Chromogranin A (CgA) is used, but is a single value, is non-specific and assay data are highly variable. To facilitate tumor detection, we developed a multi-transcript molecular signature for PCR-based blood analysis. NEN transcripts were identified by computational analysis of 3 microarray datasets: NEN tissue (n = 15), NEN peripheral blood (n = 7), and adenocarcinoma (n = 363 tumors). The candidate gene signature was examined in 130 blood samples (NENs: n = 63) and validated in two independent sets (Set 1 [n = 115, NENs: n = 72]; Set 2 [n = 120, NENs: n = 58]). Comparison with CgA (ELISA) was undertaken in 176 samples (NENs: n = 81). 51 significantly elevated transcript markers were identified. Gene-based classifiers detected NENs in independent sets with high sensitivity (85-98%), specificity (93-97%), PPV (95-96%) and NPV (87-98%). The AUC for the NEN gene-based classifiers was 0.95-0.98 compared to 0.64 for CgA (Z-statistic 6.97-11.42, p<0.0001). Overall, the gene-based classifier was significantly (χ(2) = 12.3, p<0.0005) more accurate than CgA. In a sub-analysis, pancreatic NENs and gastrointestinal NENs could be identified with similar efficacy (79-88% sensitivity, 94% specificity), as could metastases (85%). In patients with low CgA, 91% exhibited elevated transcript markers. A panel of 51 marker genes differentiates NENs from controls with a high PPV and NPV (>90%), identifies pancreatic and gastrointestinal NENs with similar efficacy, and confirms GEP-NENs when CgA levels are low. The panel is significantly more accurate than the CgA assay. This reflects its utility to identify multiple diverse biological components of NENs. Application of this sensitive and specific PCR-based blood test to NENs will allow accurate detection of disease, and potentially define disease progress enabling monitoring of treatment efficacy.
胃肠胰神经内分泌肿瘤(GEP-NENs)的发病率和患病率均在增加。这些病变的正确诊断常常被延误。这反映了缺乏用于检测 NENs 的特定血液生物标志物。目前使用神经内分泌分泌肽嗜铬粒蛋白 A(CgA)进行测量,但这只是一个单一的值,不具有特异性,并且检测数据差异很大。为了促进肿瘤的检测,我们开发了一种用于基于 PCR 的血液分析的多转录本分子特征。通过对 3 个微阵列数据集(NEN 组织(n = 15)、NEN 外周血(n = 7)和腺癌(n = 363 个肿瘤))的计算分析,确定了 NEN 转录本。在 130 个血液样本(NENs:n = 63)中检查了候选基因特征,并在两个独立的数据集(数据集 1 [n = 115,NENs:n = 72];数据集 2 [n = 120,NENs:n = 58])中进行了验证。在 176 个样本(NENs:n = 81)中进行了与 CgA(ELISA)的比较。鉴定出 51 个显著升高的转录标记物。基于基因的分类器以高灵敏度(85-98%)、特异性(93-97%)、PPV(95-96%)和 NPV(87-98%)检测独立样本中的 NEN。用于 NEN 基于基因的分类器的 AUC 为 0.95-0.98,而 CgA 为 0.64(Z 统计量为 6.97-11.42,p<0.0001)。总体而言,基于基因的分类器明显(卡方检验 12.3,p<0.0005)比 CgA 更准确。在亚分析中,胰腺 NEN 和胃肠道 NEN 可以具有相似的疗效(79-88%的灵敏度,94%的特异性)来识别,转移也可以识别(85%)。在 CgA 水平较低的患者中,91%的患者表现出升高的转录标志物。一组 51 个标记基因可区分 NENs 与对照,具有较高的 PPV 和 NPV(>90%),可识别胰腺和胃肠道 NENs,疗效相似,并确认 CgA 水平较低时的 GEP-NENs。该面板比 CgA 检测更准确。这反映了它用于识别 NENs 多种不同生物学成分的能力。将这种敏感和特异性的基于 PCR 的血液检测应用于 NEN 将允许准确检测疾病,并可能定义疾病进展,从而能够监测治疗效果。