Suppr超能文献

由多个配体-受体对介导的细胞间黏附的平衡热力学

Equilibrium thermodynamics of cell-cell adhesion mediated by multiple ligand-receptor pairs.

作者信息

Coombs Daniel, Dembo Micah, Wofsy Carla, Goldstein Byron

机构信息

Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada.

出版信息

Biophys J. 2004 Mar;86(3):1408-23. doi: 10.1016/S0006-3495(04)74211-3.

Abstract

In many situations, cell-cell adhesion is mediated by multiple ligand-receptor pairs. For example, the interaction between T cells and antigen-presenting cells of the immune system is mediated not only by T cell receptors and their ligands (peptide-major histocompatibility complex) but also by binding of intracellular adhesion molecules. Interestingly, these binding pairs have different resting lengths. Fluorescent labeling reveals segregation of the longer adhesion molecules from the shorter T cell receptors in this case. Here, we explore the thermal equilibrium of a general cell-cell interaction mediated by two ligand-receptor pairs to examine competition between the elasticity of the cell wall, nonspecific intercellular repulsion, and bond formation, leading to segregation of bonds of different lengths at equilibrium. We make detailed predictions concerning the relationship between physical properties of the membrane and ligand-receptor pairs and equilibrium pattern formation, and suggest experiments to refine our understanding of the system. We demonstrate our model by application to the T cell/antigen-presenting-cell system and outline applications to natural killer cell adhesion.

摘要

在许多情况下,细胞间黏附是由多个配体-受体对介导的。例如,免疫系统中T细胞与抗原呈递细胞之间的相互作用不仅由T细胞受体及其配体(肽-主要组织相容性复合体)介导,还由细胞内黏附分子的结合介导。有趣的是,这些结合对具有不同的静止长度。荧光标记显示,在这种情况下,较长的黏附分子与较短的T细胞受体发生了分离。在这里,我们探讨了由两个配体-受体对介导的一般细胞间相互作用的热平衡,以研究细胞壁弹性、非特异性细胞间排斥和键形成之间的竞争,从而导致不同长度的键在平衡时发生分离。我们对膜和配体-受体对的物理性质与平衡模式形成之间的关系进行了详细预测,并提出了实验建议,以完善我们对该系统的理解。我们通过将模型应用于T细胞/抗原呈递细胞系统来展示我们的模型,并概述了其在自然杀伤细胞黏附中的应用。

相似文献

1
Equilibrium thermodynamics of cell-cell adhesion mediated by multiple ligand-receptor pairs.
Biophys J. 2004 Mar;86(3):1408-23. doi: 10.1016/S0006-3495(04)74211-3.
2
Membranes as messengers in T cell adhesion signaling.
Nat Immunol. 2004 Apr;5(4):363-72. doi: 10.1038/ni1057.
3
Pattern formation during T-cell adhesion.
Biophys J. 2004 Dec;87(6):3665-78. doi: 10.1529/biophysj.104.045609. Epub 2004 Sep 17.
5
Using cell potential energy to model the dynamics of adhesive biological cells.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Apr;71(4 Pt 1):041903. doi: 10.1103/PhysRevE.71.041903. Epub 2005 Apr 7.
6
Nucleation of membrane adhesions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Feb;77(2 Pt 1):021906. doi: 10.1103/PhysRevE.77.021906. Epub 2008 Feb 11.
7
Kinetics of membrane adhesion mediated by ligand-receptor interaction studied with a biomimetic system.
Biophys J. 2001 Nov;81(5):2743-51. doi: 10.1016/S0006-3495(01)75917-6.
9
Kinetics of cell detachment: peeling of discrete receptor clusters.
Biophys J. 1994 Dec;67(6):2522-34. doi: 10.1016/S0006-3495(94)80742-8.
10
Simulations of cell-surface integrin binding to nanoscale-clustered adhesion ligands.
Biophys J. 2002 Jan;82(1 Pt 1):120-32. doi: 10.1016/S0006-3495(02)75379-4.

引用本文的文献

1
Binding of Soluble Ligands to Membrane Receptors: A Molecular Dynamics Simulation Study.
J Phys Chem B. 2025 Jul 24;129(29):7475-7482. doi: 10.1021/acs.jpcb.5c01197. Epub 2025 Jul 12.
2
Bayesian metamodeling of early T-cell antigen receptor signaling accounts for its nanoscale activation patterns.
Front Immunol. 2024 Oct 25;15:1412221. doi: 10.3389/fimmu.2024.1412221. eCollection 2024.
4
Physical-Chemical Regulation of Membrane Receptors Dynamics in Viral Invasion and Immune Defense.
J Mol Biol. 2023 Jan 15;435(1):167800. doi: 10.1016/j.jmb.2022.167800. Epub 2022 Aug 22.
6
Amphiphilic DNA nanostructures for bottom-up synthetic biology.
Chem Commun (Camb). 2021 Nov 30;57(95):12725-12740. doi: 10.1039/d1cc04311k.

本文引用的文献

1
Quantitative analysis of the contribution of TCR/pepMHC affinity and CD8 to T cell activation.
Immunity. 2003 Feb;18(2):255-64. doi: 10.1016/s1074-7613(03)00019-0.
2
Imaging immune surveillance by T cells and NK cells.
Immunol Rev. 2002 Nov;189:179-92. doi: 10.1034/j.1600-065x.2002.18915.x.
3
Imaging of T-cell interactions with antigen presenting cells in culture and in intact lymphoid tissue.
Immunol Rev. 2002 Nov;189:51-63. doi: 10.1034/j.1600-065x.2002.18906.x.
4
Quantifying signaling-induced reorientation of T cell receptors during immunological synapse formation.
Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15024-9. doi: 10.1073/pnas.192573999. Epub 2002 Nov 1.
5
Differential segregation in a cell-cell contact interface: the dynamics of the immunological synapse.
Biophys J. 2002 Oct;83(4):1784-96. doi: 10.1016/S0006-3495(02)73944-1.
6
The synapse assembly model.
Trends Immunol. 2002 Oct;23(10):500-2. doi: 10.1016/s1471-4906(02)02325-6.
8
Activated TCRs remain marked for internalization after dissociation from pMHC.
Nat Immunol. 2002 Oct;3(10):926-31. doi: 10.1038/ni838. Epub 2002 Sep 9.
9
Staging and resetting T cell activation in SMACs.
Nat Immunol. 2002 Oct;3(10):911-7. doi: 10.1038/ni836. Epub 2002 Sep 3.
10
Mechanisms contributing to the activity of integrins on leukocytes.
Immunol Rev. 2002 Aug;186:164-71. doi: 10.1034/j.1600-065x.2002.18614.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验