Weikl Thomas R, Lipowsky Reinhard
Max-Planck-Institut für Kolloid und Grenzflächenforschung, Potsdam, Germany.
Biophys J. 2004 Dec;87(6):3665-78. doi: 10.1529/biophysj.104.045609. Epub 2004 Sep 17.
T cells form intriguing patterns during adhesion to antigen-presenting cells. The patterns are composed of two types of domains, which either contain short TCR/MHCp receptor-ligand complexes or the longer LFA-1/ICAM-1 complexes. The final pattern consists of a central TCR/MHCp domain surrounded by a ring-shaped LFA-1/ICAM-1 domain, whereas the characteristic pattern formed at intermediate times is inverted with TCR/MHCp complexes at the periphery of the contact zone and LFA-1/ICAM-1 complexes in the center. Several mechanisms have been proposed to explain the T-cell pattern formation. Whereas biologists have emphasized the role of active cytoskeletal processes, previous theoretical studies suggest that the pattern evolution may be caused by spontaneous self-assembly processes alone. Some of these studies focus on circularly symmetric patterns and propose a pivot mechanism for the formation of the intermediate inverted pattern. Here, we present a statistical-mechanical model which includes thermal fluctuations and the full range of spatial patterns. We confirm the observation that the intermediate inverted pattern may be formed by spontaneous self-assembly. However, we find a different self-assembly mechanism in which numerous TCR/MHCp microdomains initially nucleate throughout the contact zone. The diffusion of free receptors and ligands into the contact zone subsequently leads to faster growth of peripheral TCR/MHCp microdomains and to a closed ring for sufficiently large TCR/MHCp concentrations. At smaller TCR/MHCp concentrations, we observe a second regime of pattern formation with characteristic multifocal intermediates, which resemble patterns observed during adhesion of immature T cells or thymozytes. In contrast to other theoretical models, we find that the final T-cell pattern with a central TCR/MHCp domain is only obtained in the presence of active cytoskeletal transport processes.
T细胞在与抗原呈递细胞黏附过程中形成有趣的模式。这些模式由两种类型的结构域组成,一种含有短的TCR/MHCp受体-配体复合物,另一种含有较长的LFA-1/ICAM-1复合物。最终模式由一个中央TCR/MHCp结构域被一个环形LFA-1/ICAM-1结构域包围组成,而在中间时间形成的特征性模式则相反,TCR/MHCp复合物位于接触区周边,LFA-1/ICAM-1复合物位于中心。已经提出了几种机制来解释T细胞模式的形成。虽然生物学家强调了活跃的细胞骨架过程的作用,但先前的理论研究表明,模式演变可能仅由自发的自组装过程引起。其中一些研究聚焦于圆对称模式,并提出了一种形成中间倒置模式的枢轴机制。在这里,我们提出了一个统计力学模型,该模型包括热涨落和所有空间模式。我们证实了中间倒置模式可能由自发自组装形成的观察结果。然而,我们发现了一种不同的自组装机制,其中大量TCR/MHCp微结构域最初在整个接触区成核。游离受体和配体向接触区的扩散随后导致周边TCR/MHCp微结构域更快生长,并在足够高的TCR/MHCp浓度下形成一个闭环。在较低的TCR/MHCp浓度下,我们观察到模式形成的第二种状态,具有特征性的多焦点中间体,类似于在未成熟T细胞或胸腺细胞黏附过程中观察到的模式。与其他理论模型不同,我们发现只有在存在活跃的细胞骨架运输过程时,才会获得具有中央TCR/MHCp结构域的最终T细胞模式。