Suppr超能文献

T细胞黏附过程中的模式形成。

Pattern formation during T-cell adhesion.

作者信息

Weikl Thomas R, Lipowsky Reinhard

机构信息

Max-Planck-Institut für Kolloid und Grenzflächenforschung, Potsdam, Germany.

出版信息

Biophys J. 2004 Dec;87(6):3665-78. doi: 10.1529/biophysj.104.045609. Epub 2004 Sep 17.

Abstract

T cells form intriguing patterns during adhesion to antigen-presenting cells. The patterns are composed of two types of domains, which either contain short TCR/MHCp receptor-ligand complexes or the longer LFA-1/ICAM-1 complexes. The final pattern consists of a central TCR/MHCp domain surrounded by a ring-shaped LFA-1/ICAM-1 domain, whereas the characteristic pattern formed at intermediate times is inverted with TCR/MHCp complexes at the periphery of the contact zone and LFA-1/ICAM-1 complexes in the center. Several mechanisms have been proposed to explain the T-cell pattern formation. Whereas biologists have emphasized the role of active cytoskeletal processes, previous theoretical studies suggest that the pattern evolution may be caused by spontaneous self-assembly processes alone. Some of these studies focus on circularly symmetric patterns and propose a pivot mechanism for the formation of the intermediate inverted pattern. Here, we present a statistical-mechanical model which includes thermal fluctuations and the full range of spatial patterns. We confirm the observation that the intermediate inverted pattern may be formed by spontaneous self-assembly. However, we find a different self-assembly mechanism in which numerous TCR/MHCp microdomains initially nucleate throughout the contact zone. The diffusion of free receptors and ligands into the contact zone subsequently leads to faster growth of peripheral TCR/MHCp microdomains and to a closed ring for sufficiently large TCR/MHCp concentrations. At smaller TCR/MHCp concentrations, we observe a second regime of pattern formation with characteristic multifocal intermediates, which resemble patterns observed during adhesion of immature T cells or thymozytes. In contrast to other theoretical models, we find that the final T-cell pattern with a central TCR/MHCp domain is only obtained in the presence of active cytoskeletal transport processes.

摘要

T细胞在与抗原呈递细胞黏附过程中形成有趣的模式。这些模式由两种类型的结构域组成,一种含有短的TCR/MHCp受体-配体复合物,另一种含有较长的LFA-1/ICAM-1复合物。最终模式由一个中央TCR/MHCp结构域被一个环形LFA-1/ICAM-1结构域包围组成,而在中间时间形成的特征性模式则相反,TCR/MHCp复合物位于接触区周边,LFA-1/ICAM-1复合物位于中心。已经提出了几种机制来解释T细胞模式的形成。虽然生物学家强调了活跃的细胞骨架过程的作用,但先前的理论研究表明,模式演变可能仅由自发的自组装过程引起。其中一些研究聚焦于圆对称模式,并提出了一种形成中间倒置模式的枢轴机制。在这里,我们提出了一个统计力学模型,该模型包括热涨落和所有空间模式。我们证实了中间倒置模式可能由自发自组装形成的观察结果。然而,我们发现了一种不同的自组装机制,其中大量TCR/MHCp微结构域最初在整个接触区成核。游离受体和配体向接触区的扩散随后导致周边TCR/MHCp微结构域更快生长,并在足够高的TCR/MHCp浓度下形成一个闭环。在较低的TCR/MHCp浓度下,我们观察到模式形成的第二种状态,具有特征性的多焦点中间体,类似于在未成熟T细胞或胸腺细胞黏附过程中观察到的模式。与其他理论模型不同,我们发现只有在存在活跃的细胞骨架运输过程时,才会获得具有中央TCR/MHCp结构域的最终T细胞模式。

相似文献

1
Pattern formation during T-cell adhesion.
Biophys J. 2004 Dec;87(6):3665-78. doi: 10.1529/biophysj.104.045609. Epub 2004 Sep 17.
2
Equilibrium thermodynamics of cell-cell adhesion mediated by multiple ligand-receptor pairs.
Biophys J. 2004 Mar;86(3):1408-23. doi: 10.1016/S0006-3495(04)74211-3.
7
Temporal dynamics in an immunological synapse: Role of thermal fluctuations in signaling.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):012706. doi: 10.1103/PhysRevE.92.012706. Epub 2015 Jul 6.
8
Low T cell receptor expression and thermal fluctuations contribute to formation of dynamic multifocal synapses in thymocytes.
Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4383-8. doi: 10.1073/pnas.0630563100. Epub 2003 Apr 1.
9
Using cell potential energy to model the dynamics of adhesive biological cells.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Apr;71(4 Pt 1):041903. doi: 10.1103/PhysRevE.71.041903. Epub 2005 Apr 7.
10
Complementary roles for CD2 and LFA-1 adhesion pathways during T cell activation.
Eur J Immunol. 1991 Mar;21(3):605-10. doi: 10.1002/eji.1830210311.

引用本文的文献

1
Multiscale Simulations of Membrane Adhesion Mediated by CD47-SIRPα Complexes.
J Chem Theory Comput. 2025 Feb 25;21(4):2030-2042. doi: 10.1021/acs.jctc.4c01337. Epub 2025 Feb 17.
2
Bayesian metamodeling of early T-cell antigen receptor signaling accounts for its nanoscale activation patterns.
Front Immunol. 2024 Oct 25;15:1412221. doi: 10.3389/fimmu.2024.1412221. eCollection 2024.
3
Membrane-Mediated Cooperative Interactions of CD47 and SIRP.
Membranes (Basel). 2023 Nov 2;13(11):871. doi: 10.3390/membranes13110871.
4
Immune cells use active tugging forces to distinguish affinity and accelerate evolution.
Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2213067120. doi: 10.1073/pnas.2213067120. Epub 2023 Mar 10.
5
Discrete LAT condensates encode antigen information from single pMHC:TCR binding events.
Nat Commun. 2022 Dec 2;13(1):7446. doi: 10.1038/s41467-022-35093-9.
6
A theory of coalescence of signaling receptor clusters in immune cells.
Physica A. 2022 Sep 15;602. doi: 10.1016/j.physa.2022.127650. Epub 2022 Jun 2.
8
Characterization of mechanisms positioning costimulatory complexes in immune synapses.
iScience. 2021 Sep 9;24(10):103100. doi: 10.1016/j.isci.2021.103100. eCollection 2021 Oct 22.
9
Interplay Between Receptor-Ligand Binding and Lipid Domain Formation Depends on the Mobility of Ligands in Cell-Substrate Adhesion.
Front Mol Biosci. 2021 Apr 12;8:655662. doi: 10.3389/fmolb.2021.655662. eCollection 2021.

本文引用的文献

1
Membranes as messengers in T cell adhesion signaling.
Nat Immunol. 2004 Apr;5(4):363-72. doi: 10.1038/ni1057.
2
Equilibrium thermodynamics of cell-cell adhesion mediated by multiple ligand-receptor pairs.
Biophys J. 2004 Mar;86(3):1408-23. doi: 10.1016/S0006-3495(04)74211-3.
3
Nanoscale organization of multiple GPI-anchored proteins in living cell membranes.
Cell. 2004 Feb 20;116(4):577-89. doi: 10.1016/s0092-8674(04)00167-9.
4
T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases.
Nature. 2004 Jan 8;427(6970):154-9. doi: 10.1038/nature02238.
5
Effective membrane model of the immunological synapse.
Phys Rev Lett. 2003 Nov 14;91(20):208101. doi: 10.1103/PhysRevLett.91.208101. Epub 2003 Nov 10.
6
The immunological synapse balances T cell receptor signaling and degradation.
Science. 2003 Nov 14;302(5648):1218-22. doi: 10.1126/science.1086507. Epub 2003 Sep 25.
7
Adhesion-induced phase separation of multiple species of membrane junctions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031919. doi: 10.1103/PhysRevE.67.031919. Epub 2003 Mar 26.
8
Low T cell receptor expression and thermal fluctuations contribute to formation of dynamic multifocal synapses in thymocytes.
Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4383-8. doi: 10.1073/pnas.0630563100. Epub 2003 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验