Holopainen Juha M, Metso Antti J, Mattila Juha-Pekka, Jutila Arimatti, Kinnunen Paavo K J
Helsinki Biophysics & Biomembrane Group, Institute of Biomedicine, University of Helsinki, Finland.
Biophys J. 2004 Mar;86(3):1510-20. doi: 10.1016/S0006-3495(04)74219-8.
The putative specific interaction and complex formation by sphingomyelin and cholesterol was investigated. Accordingly, low contents (1 mol % each) of fluorescently labeled derivatives of these lipids, namely 1-palmitoyl-2[10-(pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (PyrPC), n-[10-(1-pyrenyl)decanoyl]sphingomyelin (PyrSM), and increasing concentrations of cholesterol (up to 5 mol %), were included in large unilamellar vesicles composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1,2-dinervonoyl-sn-glycero-3-phosphocholine (DNPC), and the excimer/monomer fluorescence emission ratio (I(e)/I(m)) was measured. In DNPC below the main phase transition, the addition of up to 5 mol % cholesterol reduced I(e)/I(m) significantly. Except for this, cholesterol had only a negligible effect in both matrices and for both probes. We then compared the efficiency of resonance energy transfer from PyrPC and PyrSM to 22-(n-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3beta-ol (NBDchol). An augmenting colocalization of the latter resonance energy transfer pair with temperature was observed in a DMPC matrix below the main phase transition. In contrast, compared to PyrSM the colocalization of PyrPC with NBDchol was more efficient in the longer DNPC matrix. These results could be confirmed using 5,6-dibromo-cholestan-3beta-ol as a collisional quencher for the pyrene-labeled lipids. The results indicate lack of a specific interaction between sphingomyelin and cholesterol, and further imply that hydrophobic mismatch between the lipid constituents could provide the driving force for the cosegregation of sphingomyelin and cholesterol in fluid phospholipid bilayers of thicknesses comparable to those found for biomembranes.
研究了鞘磷脂与胆固醇之间假定的特异性相互作用和复合物形成。因此,将这些脂质的荧光标记衍生物的低含量(各1摩尔%),即1-棕榈酰基-2 [10-(芘-1-基)]癸酰基-sn-甘油-3-磷酸胆碱(PyrPC)、n- [10-(1-芘基)癸酰基]鞘磷脂(PyrSM),以及浓度不断增加的胆固醇(高达5摩尔%),包含在由1,2-二肉豆蔻酰基-sn-甘油-3-磷酸胆碱(DMPC)或1,2-二神经酰胺基-sn-甘油-3-磷酸胆碱(DNPC)组成的大单层囊泡中,并测量激基缔合物/单体荧光发射比率(I(e)/I(m))。在低于主相变温度的DNPC中,添加高达5摩尔%的胆固醇会显著降低I(e)/I(m)。除此之外,胆固醇在两种基质中对两种探针都只有微不足道的影响。然后,我们比较了从PyrPC和PyrSM到22-(n-(7-硝基苯并-2-恶唑-1,3-二氮杂环-4-基)氨基)-23,24-双降-5-胆甾烯-3β-醇(NBDchol)的共振能量转移效率。在低于主相变温度的DMPC基质中,观察到后一种共振能量转移对的共定位随温度增加。相比之下,与PyrSM相比,在较长的DNPC基质中PyrPC与NBDchol的共定位更有效。使用5,6-二溴胆甾烷-3β-醇作为芘标记脂质的碰撞猝灭剂可以证实这些结果。结果表明鞘磷脂与胆固醇之间缺乏特异性相互作用,并且进一步暗示脂质成分之间的疏水不匹配可以为鞘磷脂和胆固醇在厚度与生物膜相当的流体磷脂双层中共分离提供驱动力。