Suppr超能文献

聚乙二醇诱导的流体二元磷脂膜中温度依赖性相分离。

Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes.

作者信息

Lehtonen J Y, Kinnunen P K

机构信息

Department of Medical Chemistry, University of Helsinki, Finland.

出版信息

Biophys J. 1995 Feb;68(2):525-35. doi: 10.1016/S0006-3495(95)80214-6.

Abstract

Exclusion of the strongly hygroscopic polymer, poly(ethylene glycol) (PEG), from the surface of phosphatidylcholine liposomes results in an osmotic imbalance between the hydration layer of the liposome surface and the bulk polymer solution, thus causing a partial dehydration of the phospholipid polar headgroups. PEG (average molecular weight of 6000 and in concentrations ranging from 5 to 20%, w/w) was added to the outside of large unilamellar liposomes (LUVs). This leads to, in addition to the dehydration of the outer monolayer, an osmotically driven water outflow and shrinkage of liposomes. Under these conditions phase separation of the fluorescent lipid 1-palmitoyl-2[6-(pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (PPDPC) embedded in various phosphatidylcholine matrices was observed, evident as an increase in the excimer-to-monomer fluorescence intensity ratio (IE/IM). Enhanced segregation of the fluorescent lipid was seen upon increasing and equal concentrations of PEG both inside and outside of the LUVs, revealing that osmotic gradient across the membrane is not required, and phase separation results from the dehydration of the lipid. Importantly, phase separation of PPDPC could be induced by PEG also in binary mixtures with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), for which temperature-induced phase segregation of the fluorescent lipid below Tm was otherwise not achieved. In the different lipid matrices the segregation of PPDPC caused by PEG was abolished above characteristic temperatures T0 well above their respective main phase transition temperatures Tm. For 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), DMPC, SOPC, and POPC, T0 was observed at approximately 50, 32, 24, and 20 degrees C, respectively. Notably, the observed phase separation of PPDPC cannot be accounted for the 1 degree C increase in Tm for DMPC or for the increase by 0.5 degrees C for DPPC observed in the presence of 20% (w/w) PEG. At a given PEG concentration maximal increase in IE/IM (correlating to the extent of segregation of PPDPC in the different lipid matrices) decreased in the sequence 1,2-dihexadecyl-sn-glycero-3-phosphocholine (DHPC) > DPPC > DMPC > SOPC > POPC, whereas no evidence for phase separation in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) LUV was observed (Lehtonen and Kinnunen, 1994, Biophys. J. 66: 1981-1990). Our results indicate that PEG-induced dehydration of liposomal membranes provides the driving force for the segregation of the pyrene lipid. In brief, phase separation of PPDPC from the matrix lipid could be attributed to the diminishing effective size of the phosphatidylcholine polar headgroup resulting from its partial dehydration by PEG. This in turn would allow for enhanced van der Waals interactions between the acyl chains of the matrix lipid, which then caused the exclusion of PPDPC due to the perturbing bulky pyrene moiety. Phase separation in DMPC/PPDPC liposomes was abolished by the inclusion of 25 mol % cholesterol and to a lesser extent by epicholesterol.

摘要

从磷脂酰胆碱脂质体表面排除强吸湿性聚合物聚乙二醇(PEG)会导致脂质体表面水化层与本体聚合物溶液之间的渗透失衡,从而引起磷脂极性头基团的部分脱水。将PEG(平均分子量6000,浓度范围为5%至20%,w/w)添加到大型单层脂质体(LUVs)外部。这除了导致外层单分子层脱水外,还会引起渗透驱动的水流出和脂质体收缩。在这些条件下,观察到嵌入各种磷脂酰胆碱基质中的荧光脂质1-棕榈酰-2-[6-(芘-1-基)]癸酰-sn-甘油-3-磷酸胆碱(PPDPC)的相分离,表现为激基缔合物与单体荧光强度比(IE/IM)增加。在LUVs内部和外部增加并等量添加PEG时,荧光脂质的分离增强,这表明不需要跨膜渗透梯度,相分离是由脂质脱水引起的。重要的是,在与1,2-二肉豆蔻酰-sn-甘油-3-磷酸胆碱(DMPC)、1-硬脂酰-2-油酰-sn-甘油-3-磷酸胆碱(SOPC)和1-棕榈酰-2-油酰-sn-甘油-3-磷酸胆碱(POPC)的二元混合物中,PEG也能诱导PPDPC的相分离,否则在低于Tm的温度下,荧光脂质不会发生温度诱导的相分离。在不同的脂质基质中,由PEG引起的PPDPC分离在远高于其各自主要相变温度Tm的特征温度T0以上消失。对于1,2-二棕榈酰-sn-甘油-3-磷酸胆碱(DPPC)、DMPC、SOPC和POPC,分别在约50、32、24和20摄氏度观察到T0。值得注意的是,观察到的PPDPC相分离不能用在20%(w/w)PEG存在下DMPC的Tm升高1摄氏度或DPPC升高0.5摄氏度来解释。在给定的PEG浓度下,IE/IM的最大增加(与不同脂质基质中PPDPC的分离程度相关)按1,2-二十六烷基-sn-甘油-3-磷酸胆碱(DHPC)>DPPC>DMPC>SOPC>POPC的顺序降低,而在1,2-二油酰-sn-甘油-3-磷酸胆碱(DOPC)LUV中未观察到相分离的证据(Lehtonen和Kinnunen,1994年,《生物物理杂志》66:1981 - 1990)。我们的结果表明,PEG诱导的脂质体膜脱水为芘脂质的分离提供了驱动力。简而言之,PPDPC与基质脂质的相分离可归因于磷脂酰胆碱极性头基团因PEG部分脱水而导致的有效尺寸减小。这反过来又会增强基质脂质酰基链之间的范德华相互作用,进而由于芘部分的庞大干扰而导致PPDPC被排除。通过加入25摩尔%胆固醇,DMPC/PPDPC脂质体中的相分离被消除,表胆固醇的消除作用较小。

相似文献

6
Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
Biochimie. 2013 Nov;95(11):2018-33. doi: 10.1016/j.biochi.2013.07.006. Epub 2013 Jul 16.
7
Characterization of the main transition of dinervonoylphosphocholine liposomes by fluorescence spectroscopy.
Biochim Biophys Acta. 2004 May 27;1663(1-2):222-31. doi: 10.1016/j.bbamem.2004.03.014.
8
Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.
Eur J Pharm Biopharm. 2013 Nov;85(3 Pt A):427-43. doi: 10.1016/j.ejpb.2013.07.002. Epub 2013 Jul 17.
9
Evaluation of membrane models and their composition for islet amyloid polypeptide-membrane aggregation.
Biochim Biophys Acta. 2013 Sep;1828(9):2091-8. doi: 10.1016/j.bbamem.2013.05.014. Epub 2013 May 23.
10
Comparison of the membrane association of two antimicrobial peptides, magainin 2 and indolicidin.
Biophys J. 2001 Nov;81(5):2979-91. doi: 10.1016/S0006-3495(01)75938-3.

引用本文的文献

1
Research Progress of Phospholipid Vesicles in Biological Field.
Biomolecules. 2024 Dec 19;14(12):1628. doi: 10.3390/biom14121628.
2
Crowding-induced morphological changes in synthetic lipid vesicles determined using smFRET.
Front Bioeng Biotechnol. 2022 Oct 28;10:958026. doi: 10.3389/fbioe.2022.958026. eCollection 2022.
3
Generating Membrane Curvature at the Nuclear Pore: A Lipid Point of View.
Cells. 2022 Jan 29;11(3):469. doi: 10.3390/cells11030469.
5
Imaging tumor microscopic viscosity in vivo using molecular rotors.
Sci Rep. 2017 Jan 30;7:41097. doi: 10.1038/srep41097.
6
Development of paclitaxel-loaded liposomal nanocarrier stabilized by triglyceride incorporation.
Int J Nanomedicine. 2016 Sep 6;11:4465-4477. doi: 10.2147/IJN.S113723. eCollection 2016.
7
Surface engineering of liposomes for stealth behavior.
Pharmaceutics. 2013 Oct 25;5(4):542-69. doi: 10.3390/pharmaceutics5040542.
9
Visualizing the analogy between competitive adsorption and colloid stability to restore lung surfactant function.
Biophys J. 2012 Feb 22;102(4):777-86. doi: 10.1016/j.bpj.2012.01.014. Epub 2012 Feb 21.

本文引用的文献

1
Raising water to new heights.
Science. 1992 May 1;256(5057):618. doi: 10.1126/science.256.5057.618.
2
Periodic structures in lipid monolayer phase transitions.
Proc Natl Acad Sci U S A. 1984 May;81(10):3249-53. doi: 10.1073/pnas.81.10.3249.
3
Phosphorus assay in column chromatography.
J Biol Chem. 1959 Mar;234(3):466-8.
4
Measured change in protein solvation with substrate binding and turnover.
Biochemistry. 1993 Jun 15;32(23):5925-9. doi: 10.1021/bi00074a001.
5
Dehydration-induced lamellar-to-hexagonal-II phase transitions in DOPE/DOPC mixtures.
Biochim Biophys Acta. 1993 Jan 18;1145(1):93-104. doi: 10.1016/0005-2736(93)90385-d.
6
Role of lateral phase separation in the modulation of phospholipase A2 activity.
Biochemistry. 1993 Jan 19;32(2):583-9. doi: 10.1021/bi00053a025.
7
Thermodynamic stability and osmotic sensitivity of small unilamellar phosphatidylcholine vesicles.
Biochim Biophys Acta. 1993 Oct 10;1152(1):49-60. doi: 10.1016/0005-2736(93)90230-w.
10
Phase separated anionic domains in ternary mixed lipid monolayers at the air-water interface.
Chem Phys Lipids. 1993 Apr;65(1):31-42. doi: 10.1016/0009-3084(93)90079-i.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验