Patel Hiren P, Lu Lu, Blaszak Richard T, Bissler John J
Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.
Nucleic Acids Res. 2004 Feb 27;32(4):1460-8. doi: 10.1093/nar/gkh312. Print 2004.
Although autosomal dominant polycystic kidney disease is transmitted in an autosomal dominant fashion, there is evidence that the pathophysiology of cystogenesis involves a second hit somatic mutation superimposed upon the inherited germline mutation within the renal tubule cells. The polypurine.polypyrimidine (Pu.Py) tract of PKD1 intron 21 may play a role in promoting somatic mutations. To better characterize this tract and to evaluate its potential to participate in mutagenesis, we investigated the thermodynamics of intramolecular triplex formation by 15 Pu.Py mirror repeat tracts from PKD1 intron 21 by 2D gel electrophoresis. We demonstrate that intramolecular triplexes form with modest superhelical tensions for all the tracts examined. Primer extension studies demonstrated significant polymerase arrest within the Pu.Py tracts in one direction of replication only. We found correlation between polymerization arrest and both the potential length of the triplex and superhelical tension of intramolecular triplex formation. The presence of a Pu.Py tract also led to a replication blockade and double-strand breakage using an SV40 in vitro replication assay with HeLa cell extracts. During DNA replication, the G-rich template of the PKD1 Pu.Py tracts may form a triplex structure with the nascent strand, thereby blocking replication and potentially leading to recombination and mutation.
尽管常染色体显性遗传性多囊肾病以常染色体显性方式遗传,但有证据表明囊肿形成的病理生理学涉及叠加在肾小管细胞中遗传性种系突变之上的第二次体细胞突变。PKD1基因第21内含子的聚嘌呤-聚嘧啶(Pu.Py)序列可能在促进体细胞突变中起作用。为了更好地表征该序列并评估其参与诱变的潜力,我们通过二维凝胶电泳研究了来自PKD1基因第21内含子的15个Pu.Py镜像重复序列形成分子内三链体的热力学。我们证明,对于所有检测的序列,分子内三链体在适度的超螺旋张力下形成。引物延伸研究表明,仅在一个复制方向上,聚合酶在Pu.Py序列内有明显的停滞。我们发现聚合停滞与三链体的潜在长度和分子内三链体形成的超螺旋张力之间存在相关性。使用含有HeLa细胞提取物的SV40体外复制试验,Pu.Py序列的存在还导致了复制阻断和双链断裂。在DNA复制过程中,PKD1基因Pu.Py序列富含G的模板可能与新生链形成三链体结构,从而阻断复制并可能导致重组和突变。