Oşan Remus, Curtu Rodica, Rubin Jonathan, Ermentrout Bard
Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA.
J Math Biol. 2004 Mar;48(3):243-74. doi: 10.1007/s00285-003-0228-4. Epub 2003 Aug 20.
This paper builds on the past study of single-spike waves in one-dimensional integrate-and-fire networks to provide a framework for the study of waves with arbitrary (finite or countably infinite) collections of spike times. Based on this framework, we prove an existence theorem for single-spike traveling waves, and we combine analysis and numerics to study two-spike traveling waves, periodic traveling waves, and general infinite spike trains. For a fixed wave speed, finite-spike waves, periodic waves, and other infinite-spike waves may all occur, and we discuss the relationships among them. We also relate the waves considered analytically to waves generated in numerical simulations by the transient application of localized excitation.
本文基于过去对一维积分发放网络中单峰波的研究,为研究具有任意(有限或可数无限)脉冲时间集合的波提供了一个框架。基于此框架,我们证明了单峰行波的一个存在定理,并结合分析和数值方法来研究双峰行波、周期行波和一般的无限脉冲序列。对于固定的波速,有限脉冲波、周期波和其他无限脉冲波都可能出现,我们讨论了它们之间的关系。我们还将通过解析方法考虑的波与通过局部激励的瞬态应用在数值模拟中产生的波联系起来。