Suppr超能文献

新皮质切片中神经元放电的传播:计算与实验研究。

Propagating neuronal discharges in neocortical slices: computational and experimental study.

作者信息

Golomb D, Amitai Y

机构信息

Zlotowski Center for Neuroscience and Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

出版信息

J Neurophysiol. 1997 Sep;78(3):1199-211. doi: 10.1152/jn.1997.78.3.1199.

Abstract

We studied the propagation of paroxysmal discharges in disinhibited neocortical slices by developing and analyzing a model of excitatory regular-spiking neocortical cells with spatially decaying synaptic efficacies and by field potential recording in rat slices. Evoked discharges may propagate both in the model and in the experiment. The model discharge propagates as a traveling pulse with constant velocity and shape. The discharge shape is determined by an interplay between the synaptic driving force and the neuron's intrinsic currents, in particular the slow potassium current. In the model, N-methyl-D-aspartate (NMDA) conductance contributes much less to the discharge velocity than amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) conductance. Blocking NMDA receptors experimentally with 2-amino-5-phosphonovaleric acid (APV) has no significant effect on the discharge velocity. In both model and experiments, propagation occurs for AMPA synaptic coupling gAMPA above a certain threshold, at which the velocity is finite (non-zero). The discharge velocity grows linearly with the gAMPA for gAMPA much above the threshold. In the experiments, blocking AMPA receptors gradually by increasing concentrations of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in the perfusing solution results in a gradual reduction of the discharge velocity until propagation stops altogether, thus confirming the model prediction. When discharges are terminated in the model by the slow potassium current, a network with the same parameter set may display discharges with several forms, which have different velocities and numbers of spikes; initial conditions select the exhibited pattern. When the discharge is also terminated by strong synaptic depression, there is only one discharge form for a particular parameter set; the velocity grows continuously with increased synaptic conductances. No indication for more than one discharge velocity was observed experimentally. If the AMPA decay rate increases while the maximal excitatory postsynaptic conductance (EPSC) a cell receives is kept fixed, the velocity increases by approximately 20% until it reaches a saturated value. Therefore the discharge velocity is determined mainly by the cells' integration time of input EPSCs. We conclude, on the basis of both the experiments and the model, that the total amount of excitatory conductance a typical cell receives in a control slice exhibiting paroxysmal discharges is only approximately 5 times larger than the excitatory conductance needed for raising the potential of a resting cell above its action potential threshold.

摘要

我们通过建立并分析一个具有空间衰减突触效能的兴奋性规则发放新皮层细胞模型,以及在大鼠脑片上进行场电位记录,研究了去抑制新皮层脑片中阵发性放电的传播。诱发放电在模型和实验中均可传播。模型放电以恒定速度和形状的行波形式传播。放电形状由突触驱动力与神经元固有电流(特别是缓慢钾电流)之间的相互作用决定。在模型中,N-甲基-D-天冬氨酸(NMDA)电导对放电速度的贡献远小于氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)电导。用2-氨基-5-膦酰基戊酸(APV)实验性阻断NMDA受体对放电速度无显著影响。在模型和实验中,当AMPA突触耦合gAMPA高于某一阈值时都会发生传播,此时速度是有限的(非零)。当gAMPA远高于阈值时,放电速度随gAMPA线性增加。在实验中,通过在灌注液中增加6-氰基-7-硝基喹喔啉-2,3-二酮(CNQX)的浓度逐渐阻断AMPA受体,会导致放电速度逐渐降低,直至传播完全停止,从而证实了模型预测。当模型中的放电被缓慢钾电流终止时,具有相同参数集的网络可能会显示出几种不同形式的放电,它们具有不同的速度和峰电位数量;初始条件决定了所呈现的模式。当放电也因强烈的突触抑制而终止时,对于特定的参数集只有一种放电形式;速度随突触电导增加而持续增加。实验中未观察到超过一种放电速度的迹象。如果AMPA衰减率增加,而细胞接收的最大兴奋性突触后电导(EPSC)保持不变,则速度会增加约20%,直至达到饱和值。因此,放电速度主要由细胞对输入EPSC的整合时间决定。基于实验和模型,我们得出结论,在表现出阵发性放电的对照脑片中,典型细胞接收的兴奋性电导总量仅比将静息细胞电位提高到动作电位阈值所需的兴奋性电导大约5倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验