Suppr超能文献

神经系统的棘波和率基动力学的互补性。

Complementarity of spike- and rate-based dynamics of neural systems.

机构信息

School of Engineering, University of Waikato, Hamilton, New Zealand.

出版信息

PLoS Comput Biol. 2012;8(6):e1002560. doi: 10.1371/journal.pcbi.1002560. Epub 2012 Jun 21.

Abstract

Relationships between spiking-neuron and rate-based approaches to the dynamics of neural assemblies are explored by analyzing a model system that can be treated by both methods, with the rate-based method further averaged over multiple neurons to give a neural-field approach. The system consists of a chain of neurons, each with simple spiking dynamics that has a known rate-based equivalent. The neurons are linked by propagating activity that is described in terms of a spatial interaction strength with temporal delays that reflect distances between neurons; feedback via a separate delay loop is also included because such loops also exist in real brains. These interactions are described using a spatiotemporal coupling function that can carry either spikes or rates to provide coupling between neurons. Numerical simulation of corresponding spike- and rate-based methods with these compatible couplings then allows direct comparison between the dynamics arising from these approaches. The rate-based dynamics can reproduce two different forms of oscillation that are present in the spike-based model: spiking rates of individual neurons and network-induced modulations of spiking rate that occur if network interactions are sufficiently strong. Depending on conditions either mode of oscillation can dominate the spike-based dynamics and in some situations, particularly when the ratio of the frequencies of these two modes is integer or half-integer, the two can both be present and interact with each other.

摘要

通过分析一个可以同时采用这两种方法进行处理的模型系统,探索了尖峰神经元和基于比率的方法在神经集合体动力学方面的关系,其中基于比率的方法进一步在多个神经元上平均化,给出了神经场方法。该系统由一系列神经元组成,每个神经元都具有简单的尖峰动力学,并且具有已知的基于比率的等效物。神经元通过传播活动相互连接,传播活动用具有时间延迟的空间相互作用强度来描述,以反映神经元之间的距离;还包括通过单独的延迟环进行的反馈,因为这种环也存在于真实的大脑中。这些相互作用使用时空耦合函数来描述,该函数可以携带尖峰或比率,从而在神经元之间提供耦合。使用这些兼容的耦合对相应的基于尖峰和基于比率的方法进行数值模拟,然后可以直接比较这两种方法产生的动力学。基于比率的动力学可以再现基于尖峰模型中存在的两种不同形式的振荡:单个神经元的尖峰率以及如果网络相互作用足够强,则发生的尖峰率的网络诱导调制。根据条件,两种振荡模式中的任何一种都可以主导基于尖峰的动力学,并且在某些情况下,特别是当这两种模式的频率之比为整数或半整数时,两种模式都可以存在并相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7f8/3380910/a3ad99bb5290/pcbi.1002560.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验