Suppr超能文献

功能重整化群与无序弹性系统的场论

Functional renormalization group and the field theory of disordered elastic systems.

作者信息

Le Doussal Pierre, Wiese Kay Jörg, Chauve Pascal

机构信息

CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026112. doi: 10.1103/PhysRevE.69.026112. Epub 2004 Feb 25.

Abstract

We study elastic systems, such as interfaces or lattices, pinned by quenched disorder. To escape triviality as a result of "dimensional reduction," we use the functional renormalization group. Difficulties arise in the calculation of the renormalization group functions beyond one-loop order. Even worse, observables such as the two-point correlation function exhibit the same problem already at one-loop order. These difficulties are due to the nonanalyticity of the renormalized disorder correlator at zero temperature, which is inherent to the physics beyond the Larkin length, characterized by many metastable states. As a result, two-loop diagrams, which involve derivatives of the disorder correlator at the nonanalytic point, are naively "ambiguous." We examine several routes out of this dilemma, which lead to a unique renormalizable field theory at two-loop order. It is also the only theory consistent with the potentiality of the problem. The beta function differs from previous work and the one at depinning by novel "anomalous terms." For interfaces and random-bond disorder we find a roughness exponent zeta=0.208 298 04epsilon+0.006 858epsilon(2), epsilon=4-d. For random-field disorder we find zeta=epsilon/3 and compute universal amplitudes to order O(epsilon(2)). For periodic systems we evaluate the universal amplitude of the two-point function. We also clarify the dependence of universal amplitudes on the boundary conditions at large scale. All predictions are in good agreement with numerical and exact results and are an improvement over one loop. Finally we calculate higher correlation functions, which turn out to be equivalent to those at depinning to leading order in epsilon.

摘要

我们研究由淬火无序钉扎的弹性系统,例如界面或晶格。为了避免因“维度约化”而变得平凡,我们使用泛函重整化群。在计算超出一圈阶的重整化群函数时会出现困难。更糟糕的是,诸如两点关联函数之类的可观测量在一圈阶就已经表现出同样的问题。这些困难是由于零温度下重整化无序关联函数的非解析性,这是拉金长度之外的物理所固有的,其特征是存在许多亚稳态。结果,涉及非解析点处无序关联函数导数的两圈图天真地是“模糊的”。我们研究了摆脱这一困境的几种途径,这些途径导致了在两圈阶唯一可重整化的场论。它也是与该问题的潜在性一致的唯一理论。β函数与先前的工作不同,并且在脱钉时的β函数有新的“反常项”。对于界面和随机键无序,我们发现粗糙度指数ζ = 0.20829804ε + 0.006858ε²,ε = 4 - d。对于随机场无序,我们发现ζ = ε/3,并计算到O(ε²)阶的普适振幅。对于周期系统,我们评估两点函数的普适振幅。我们还阐明了大尺度下普适振幅对边界条件的依赖性。所有预测都与数值和精确结果高度吻合,并且比一圈阶有所改进。最后,我们计算了更高阶的关联函数,结果发现它们在ε的主导阶上与脱钉时的关联函数等价。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验