Suppr超能文献

Higher correlations, universal distributions, and finite size scaling in the field theory of depinning.

作者信息

Le Doussal Pierre, Wiese Kay Jörg

机构信息

CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Oct;68(4 Pt 2):046118. doi: 10.1103/PhysRevE.68.046118. Epub 2003 Oct 21.

Abstract

Recently we constructed a renormalizable field theory up to two loops for the quasistatic depinning of elastic manifolds in a disordered environment. Here we explore further properties of the theory. We show how higher correlation functions of the displacement field can be computed. Drastic simplifications occur, unveiling much simpler diagrammatic rules than anticipated. This is applied to the universal scaled width distribution. The expansion in d=4-epsilon predicts that the scaled distribution coincides to the lowest orders with the one for a Gaussian theory with propagator G(q)=1/q(d+2 zeta), zeta being the roughness exponent. The deviations from this Gaussian result are small and involve higher correlation functions, which are computed here for different boundary conditions. Other universal quantities are defined and evaluated: We perform a general analysis of the stability of the fixed point. We find that the correction-to-scaling exponent is omega=-epsilon and not -epsilon/3 as used in the analysis of some simulations. A more detailed study of the upper critical dimension is given, where the roughness of interfaces grows as a power of a logarithm instead of a pure power.

摘要

相似文献

1
Higher correlations, universal distributions, and finite size scaling in the field theory of depinning.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Oct;68(4 Pt 2):046118. doi: 10.1103/PhysRevE.68.046118. Epub 2003 Oct 21.
2
Universal interface width distributions at the depinning threshold.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Sep;68(3 Pt 2):036128. doi: 10.1103/PhysRevE.68.036128. Epub 2003 Sep 24.
3
Functional renormalization group and the field theory of disordered elastic systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026112. doi: 10.1103/PhysRevE.69.026112. Epub 2004 Feb 25.
4
Finite-size effects in film geometry with nonperiodic boundary conditions: Gaussian model and renormalization-group theory at fixed dimension.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 1):061106. doi: 10.1103/PhysRevE.81.061106. Epub 2010 Jun 2.
5
Scaling and nonscaling finite-size effects in the Gaussian and the mean spherical model with free boundary conditions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 May;67(5 Pt 2):056127. doi: 10.1103/PhysRevE.67.056127. Epub 2003 May 27.
6
Correlations between avalanches in the depinning dynamics of elastic interfaces.
Phys Rev E. 2020 Mar;101(3-1):032108. doi: 10.1103/PhysRevE.101.032108.
7
Two-loop functional renormalization for elastic manifolds pinned by disorder in N dimensions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Sep;72(3 Pt 2):035101. doi: 10.1103/PhysRevE.72.035101. Epub 2005 Sep 15.
8
Size distributions of shocks and static avalanches from the functional renormalization group.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 May;79(5 Pt 1):051106. doi: 10.1103/PhysRevE.79.051106. Epub 2009 May 7.
9
Renormalization of pinned elastic systems: how does it work beyond one loop?
Phys Rev Lett. 2001 Feb 26;86(9):1785-8. doi: 10.1103/PhysRevLett.86.1785.
10
Scaling behavior for finite O(n) systems with long-range interaction.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Feb;63(2 Pt 2):026103. doi: 10.1103/PhysRevE.63.026103. Epub 2001 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验