Aspelmeier T, Bray A J, Moore M A
Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom.
Phys Rev Lett. 2004 Feb 27;92(8):087203. doi: 10.1103/PhysRevLett.92.087203. Epub 2004 Feb 26.
We compute the complexity [logarithm of the number of Thouless-Anderson-Palmer (TAP) states] associated with minima and index-one saddle points of the TAP free energy. Higher-index saddles have smaller complexities. The two leading complexities are equal, consistent with the Morse theorem on the total number of turning points, and have the value given by Bray and Moore [J. Phys. C, ()]]. In the thermodynamic limit, TAP states of all free energies become marginally stable.
我们计算了与 Thouless-Anderson-Palmer(TAP)自由能的极小值和一阶鞍点相关的复杂度[Thouless-Anderson-Palmer(TAP)态数量的对数]。高阶鞍点的复杂度较小。两个主要的复杂度相等,这与关于转折点总数的莫尔斯定理一致,并且具有 Bray 和 Moore [《物理学报 C》,()]给出的值。在热力学极限下,所有自由能的 TAP 态都变得边际稳定。