Faulkner Jill R, Herrmann Julia E, Woo Michael J, Tansey Keith E, Doan Ngan B, Sofroniew Michael V
Department of Neurobiology, University of California, Los Angeles, California 90095-1763, USA.
J Neurosci. 2004 Mar 3;24(9):2143-55. doi: 10.1523/JNEUROSCI.3547-03.2004.
Reactive astrocytes are prominent in the cellular response to spinal cord injury (SCI), but their roles are not well understood. We used a transgenic mouse model to study the consequences of selective and conditional ablation of reactive astrocytes after stab or crush SCI. Mice expressing a glial fibrillary acid protein-herpes simplex virus-thymidine kinase transgene were given mild or moderate SCI and treated with the antiviral agent ganciclovir (GCV) to ablate dividing, reactive, transgene-expressing astrocytes in the immediate vicinity of the SCI. Small stab injuries in control mice caused little tissue disruption, little demyelination, no obvious neuronal death, and mild, reversible functional impairments. Equivalent small stab injuries in transgenic mice given GCV to ablate reactive astrocytes caused failure of blood-brain barrier repair, leukocyte infiltration, local tissue disruption, severe demyelination, neuronal and oligodendrocyte death, and pronounced motor deficits. Moderate crush injuries in control mice caused focal tissue disruption and cellular degeneration, with moderate, primarily reversible motor impairments. Equivalent moderate crush injuries combined with ablation of reactive astrocytes caused widespread tissue disruption, pronounced cellular degeneration, and failure of wound contraction, with severe persisting motor deficits. These findings show that reactive astrocytes provide essential activities that protect tissue and preserve function after mild or moderate SCI. In nontransgenic animals, crush or contusion SCIs routinely exhibit regions of degenerated tissue that are devoid of astrocytes. Our findings suggest that identifying ways to preserve reactive astrocytes, to augment their protective functions, or both, may lead to novel approaches to reducing secondary tissue degeneration and improving functional outcome after SCI.
反应性星形胶质细胞在脊髓损伤(SCI)的细胞反应中很突出,但其作用尚未完全明确。我们使用转基因小鼠模型来研究在刺伤或挤压性脊髓损伤后选择性和条件性消融反应性星形胶质细胞的后果。给表达胶质纤维酸性蛋白-单纯疱疹病毒-胸苷激酶转基因的小鼠造成轻度或中度脊髓损伤,并用抗病毒药物更昔洛韦(GCV)进行治疗,以消融脊髓损伤紧邻区域中正在分裂的、反应性的、表达转基因的星形胶质细胞。对照小鼠的小刺伤造成的组织破坏很小,脱髓鞘程度轻微,无明显神经元死亡,且功能损害轻微且可逆。给转基因小鼠使用GCV消融反应性星形胶质细胞后,同等程度的小刺伤导致血脑屏障修复失败、白细胞浸润、局部组织破坏、严重脱髓鞘、神经元和少突胶质细胞死亡以及明显的运动功能障碍。对照小鼠的中度挤压伤造成局部组织破坏和细胞变性,伴有中度的、主要为可逆的运动功能障碍。同等程度的中度挤压伤并结合反应性星形胶质细胞的消融导致广泛的组织破坏、明显的细胞变性和伤口收缩失败,伴有严重且持续存在的运动功能障碍。这些发现表明,反应性星形胶质细胞在轻度或中度脊髓损伤后提供保护组织和维持功能的重要活动。在非转基因动物中,挤压或挫伤性脊髓损伤通常会出现没有星形胶质细胞的变性组织区域。我们的发现表明,找到保留反应性星形胶质细胞、增强其保护功能或两者兼有的方法,可能会带来减少继发性组织变性和改善脊髓损伤后功能结局的新方法。