Tendolkar Amruta, Mokalled Mayssa H
Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
Center of Regenerative Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA.
Development. 2025 Oct 15;152(20). doi: 10.1242/dev.204790. Epub 2025 Jul 30.
Vertebrates exhibit a range of regenerative capacities following spinal cord injury. At one end of the spectrum are chief regenerators, including teleost fish and urodele amphibians. At the other end, most mammalian species exhibit limited repair and multicellular complications following spinal cord injury. Pro-regenerative immune, glial and neuronal injury responses underlie innate spinal cord repair in highly regenerative vertebrates. In many instances, fundamental mechanisms of spinal cord repair represent ancestral neuroprotection mechanisms that are conserved but become overwhelmed by anti-regenerative effects in mammals. Reflecting recent advances in the field, we review how fine-tuned immune responses, pro-regenerative glial cell reactivity and multimodal neuronal repair direct innate spinal cord repair.
脊椎动物在脊髓损伤后表现出一系列再生能力。在这个范围的一端是主要的再生者,包括硬骨鱼和有尾两栖动物。在另一端,大多数哺乳动物在脊髓损伤后表现出有限的修复和多细胞并发症。促再生的免疫、神经胶质和神经元损伤反应是高度再生脊椎动物先天性脊髓修复的基础。在许多情况下,脊髓修复的基本机制代表了保守的祖传神经保护机制,但在哺乳动物中被抗再生作用所压倒。反映该领域的最新进展,我们综述了微调的免疫反应、促再生的神经胶质细胞反应性和多模式神经元修复如何指导先天性脊髓修复。