Kalani M Yashar S, Vaidehi Nagarajan, Hall Spencer E, Trabanino Rene J, Freddolino Lydia, Kalani Maziyar A, Floriano Wely B, Kam Victor Wai Tak, Goddard William A
Materials and Process Simulation Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA.
Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3815-20. doi: 10.1073/pnas.0400100101. Epub 2004 Mar 3.
Dopamine neurotransmitter and its receptors play a critical role in the cell signaling process responsible for information transfer in neurons functioning in the nervous system. Development of improved therapeutics for such disorders as Parkinson's disease and schizophrenia would be significantly enhanced with the availability of the 3D structure for the dopamine receptors and of the binding site for dopamine and other agonists and antagonists. We report here the 3D structure of the long isoform of the human D2 dopamine receptor, predicted from primary sequence using first-principles theoretical and computational techniques (i.e., we did not use bioinformatic or experimental 3D structural information in predicting structures). The predicted 3D structure is validated by comparison of the predicted binding site and the relative binding affinities of dopamine, three known dopamine agonists (antiparkinsonian), and seven known antagonists (antipsychotic) in the D2 receptor to experimentally determined values. These structures correctly predict the critical residues for binding dopamine and several antagonists, identified by mutation studies, and give relative binding affinities that correlate well with experiments. The predicted binding site for dopamine and agonists is located between transmembrane (TM) helices 3, 4, 5, and 6, whereas the best antagonists bind to a site involving TM helices 2, 3, 4, 6, and 7 with minimal contacts to TM helix 5. We identify characteristic differences between the binding sites of agonists and antagonists.
多巴胺神经递质及其受体在负责神经系统中神经元信息传递的细胞信号传导过程中起着关键作用。如果能获得多巴胺受体的三维结构以及多巴胺和其他激动剂及拮抗剂的结合位点,那么帕金森病和精神分裂症等疾病的改良疗法的研发将得到显著加强。我们在此报告人类D2多巴胺受体长亚型的三维结构,该结构是使用第一性原理理论和计算技术从一级序列预测得到的(即我们在预测结构时未使用生物信息学或实验三维结构信息)。通过将预测的结合位点以及D2受体中多巴胺、三种已知多巴胺激动剂(抗帕金森病药物)和七种已知拮抗剂(抗精神病药物)的相对结合亲和力与实验测定值进行比较,对预测的三维结构进行了验证。这些结构正确地预测了通过突变研究确定的与多巴胺和几种拮抗剂结合的关键残基,并给出了与实验结果相关性良好的相对结合亲和力。预测的多巴胺和激动剂结合位点位于跨膜(TM)螺旋3、4、5和6之间,而最佳拮抗剂则结合到一个涉及TM螺旋2、3、4、6和7的位点,与TM螺旋5的接触最少。我们确定了激动剂和拮抗剂结合位点之间的特征差异。