Faculty of Physics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania.
Biomolecular Modeling and Computational Spectroscopy Laboratory, Institute for Research, Development and Innovation in Applied Natural Sciences, Babeş-Bolyai University, 400327 Cluj-Napoca, Romania.
Int J Mol Sci. 2022 Feb 11;23(4):2005. doi: 10.3390/ijms23042005.
The D2 subunit dopamine receptor represents a key factor in modulating dopamine release. Moreover, the investigated radiopharmaceutical ligands used in positron emission tomography imaging techniques are known to bind D2 receptors, allowing for dopaminergic pathways quantification in the living human brain. Thus, the biophysical characterization of these radioligands is expected to provide additional insights into the interaction mechanisms between the vehicle molecules and their targets. Using molecular dynamics simulations and QM calculations, the present study aimed to investigate the potential positions in which the D2 dopamine receptor would most likely interact with the three distinctive synthetic 11C-labeled compounds (raclopride (3,5-dichloro-N-[[(2S)-1-ethylpyrrolidin-2-yl]methyl]-2-hydroxy-6-methoxybenzamide)-RACL, FLB457 (5-bromo-N-[[(2S)-1-ethylpyrrolidin-2-yl]methyl]-2,3-dimethoxybenzamide)-FLB457 and SCH23390 (R(+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine)-SCH)), as well as to estimate the binding affinities of the ligand-receptor complexes. A docking study was performed prior to multiple 50 ns molecular dynamics productions for the ligands situated at the top and bottom interacting pockets of the receptor. The most prominent motions for the RACL ligand were described by the high fluctuations of the peripheral aliphatic -CH3 groups and by its C-Cl aromatic ring groups. In good agreement with the experimental data, the D2 dopamine receptor-RACL complex showed the highest interacting patterns for ligands docked at the receptor's top position.
D2 亚单位多巴胺受体是调节多巴胺释放的关键因素。此外,研究中使用的正电子发射断层扫描成像技术放射性配体已知与 D2 受体结合,从而能够对活体人脑的多巴胺能通路进行定量。因此,这些放射性配体的生物物理特性有望为载体分子与其靶标的相互作用机制提供更多的见解。本研究使用分子动力学模拟和 QM 计算,旨在研究 D2 多巴胺受体最有可能与三种独特的合成 11C 标记化合物([rac]-氯丙嗪(3,5-二氯-N-[[(2S)-1-乙基吡咯烷-2-基]甲基]-2-羟基-6-甲氧基苯甲酰胺)-RACL、[FLB457](5-溴-N-[[(2S)-1-乙基吡咯烷-2-基]甲基]-2,3-二甲氧基苯甲酰胺)-FLB457 和 [SCH23390](R(+)-7-氯-8-羟基-3-甲基-1-苯基-2,3,4,5-四氢-1H-3-苯并氮杂卓)-SCH))相互作用的潜在位置,并估计配体-受体复合物的结合亲和力。在对位于受体顶部和底部相互作用口袋的配体进行 50 ns 分子动力学模拟之前,进行了对接研究。对于 RACL 配体,最显著的运动是其外围脂肪族-CH3 基团和 C-Cl 芳环基团的高波动。与实验数据非常吻合的是,D2 多巴胺受体-RACL 复合物显示出与位于受体顶部位置的配体结合的最高相互作用模式。