García-Gómez Juan M, Vidal César, Martí-Bonmatí Luis, Galant Joaquín, Sans Nicolas, Robles Montserrat, Casacuberta Francisco
BET, Informática Médica, Universidad Politécnica de Valencia, Spain.
MAGMA. 2004 Mar;16(4):194-201. doi: 10.1007/s10334-003-0023-7. Epub 2004 Mar 1.
This article presents a pattern-recognition approach to the soft tissue tumors (STT) benign/malignant character diagnosis using magnetic resonance (MR) imaging applied to a large multicenter database.
To develop and test an automatic classifier of STT into benign or malignant by using classical MR imaging findings and epidemiological information.
A database of 430 patients (62% benign and 38% malignant) from several European multicenter registers. There were 61 different histologies (36 with benign and 25 with malignant nature). Three pattern-recognition methods (artificial neural networks, support vector machine, k-nearest neighbor) were applied to learn the discrimination between benignity and malignancy based on a defined MR imaging findings protocol. After the systems had learned by using training samples (with 302 cases), the clinical decision support system was tested in the diagnosis of 128 new STT cases.
An 88-92% efficacy was obtained in a not-viewed set of tumors using the pattern-recognition techniques. The best results were obtained with a back-propagation artificial neural network.
Benign vs. malignant STT discrimination is accurate by using pattern-recognition methods based on classical MR image findings. This objective tool will assist radiologists in STT grading.
本文介绍了一种模式识别方法,用于利用磁共振(MR)成像对软组织肿瘤(STT)的良恶性特征进行诊断,并将其应用于一个大型多中心数据库。
通过使用经典的MR成像结果和流行病学信息,开发并测试一种将STT自动分类为良性或恶性的分类器。
来自几个欧洲多中心登记处的430例患者的数据库(62%为良性,38%为恶性)。有61种不同的组织学类型(36种为良性,25种为恶性)。应用三种模式识别方法(人工神经网络、支持向量机、k近邻),根据定义的MR成像结果协议来学习区分良性和恶性。在系统使用训练样本(302例)进行学习后,对128例新的STT病例进行临床决策支持系统诊断测试。
使用模式识别技术在一组未观察的肿瘤中获得了88%-92%的准确率。反向传播人工神经网络取得了最佳结果。
通过基于经典MR图像结果的模式识别方法,良性与恶性STT的区分是准确的。这种客观工具将有助于放射科医生对STT进行分级。