Suppr超能文献

机器学习在骨骼肌肉恶性肿瘤影像驱动诊断中的应用——范围综述。

Applications of machine learning for imaging-driven diagnosis of musculoskeletal malignancies-a scoping review.

机构信息

Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.

Institute for AI and Informatics in Medicine, Technical University of Munich, Munich, Germany.

出版信息

Eur Radiol. 2022 Oct;32(10):7173-7184. doi: 10.1007/s00330-022-08981-3. Epub 2022 Jul 19.

Abstract

Musculoskeletal malignancies are a rare type of cancer. Consequently, sufficient imaging data for machine learning (ML) applications is difficult to obtain. The main purpose of this review was to investigate whether ML is already having an impact on imaging-driven diagnosis of musculoskeletal malignancies and what the respective reasons for this might be. A scoping review was conducted by a radiologist, an orthopaedic surgeon and a data scientist to identify suitable articles based on the PRISMA statement. Studies meeting the following criteria were included: primary malignant musculoskeletal tumours, machine/deep learning application, imaging data or data retrieved from images, human/preclinical, English language and original research. Initially, 480 articles were found and 38 met the eligibility criteria. Several continuous and discrete parameters related to publication, patient distribution, tumour specificities, ML methods, data and metrics were extracted from the final articles. For the synthesis, diagnosis-oriented studies were further examined by retrieving the number of patients and labels and metric scores. No significant correlations between metrics and mean number of samples were found. Several studies presented that ML could support imaging-driven diagnosis of musculoskeletal malignancies in distinct cases. However, data quality and quantity must be increased to achieve clinically relevant results. Compared to the experience of an expert radiologist, the studies used small datasets and mostly included only one type of data. Key to critical advancement of ML models for rare diseases such as musculoskeletal malignancies is a systematic, structured data collection and the establishment of (inter)national networks to obtain substantial datasets in the future. KEY POINTS: • Machine learning does not yet significantly impact imaging-driven diagnosis for musculoskeletal malignancies compared to other disciplines such as lung, breast or CNS cancer. • Research in the area of musculoskeletal tumour imaging and machine learning is still very limited. • Machine learning in musculoskeletal tumour imaging is impeded by insufficient availability of data and rarity of the disease.

摘要

肌肉骨骼恶性肿瘤是一种罕见的癌症。因此,很难获得足够的机器学习 (ML) 应用成像数据。本次综述的主要目的是研究机器学习是否已经对肌肉骨骼恶性肿瘤的成像驱动诊断产生影响,以及可能的原因是什么。一位放射科医生、一位骨科医生和一位数据科学家进行了范围界定审查,以根据 PRISMA 声明确定合适的文章。符合以下标准的研究被纳入:原发性恶性肌肉骨骼肿瘤、机器/深度学习应用、成像数据或从图像中检索的数据、人类/临床前、英语和原始研究。最初发现了 480 篇文章,其中 38 篇符合入选标准。从最终的文章中提取了与出版、患者分布、肿瘤特异性、ML 方法、数据和指标相关的几个连续和离散参数。为了进行综合分析,通过检索患者数量和标签以及指标分数,进一步研究了面向诊断的研究。未发现指标与样本均值之间存在显著相关性。有几项研究表明,ML 可以在特定情况下支持肌肉骨骼恶性肿瘤的成像驱动诊断。然而,必须提高数据的质量和数量,以获得具有临床意义的结果。与经验丰富的放射科医生相比,这些研究使用的数据集较小,并且大多只包含一种类型的数据。对于肌肉骨骼恶性肿瘤等罕见疾病的 ML 模型的关键进展,关键是系统地、有结构地收集数据,并建立(国际)网络,以便将来获得大量数据集。关键点:

  • 与肺癌、乳腺癌或中枢神经系统癌症等其他学科相比,机器学习对肌肉骨骼恶性肿瘤的成像驱动诊断的影响还不明显。

  • 肌肉骨骼肿瘤成像和机器学习领域的研究仍然非常有限。

  • 肌肉骨骼肿瘤成像中的机器学习受到数据可用性不足和疾病罕见性的限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ce7/9474640/9fc05e619c52/330_2022_8981_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验