Suppr超能文献

利用代谢与生物工艺工程生产富含硒代甲基硒代半胱氨酸的酵母。

Metabolic and bioprocess engineering for production of selenized yeast with increased content of seleno-methylselenocysteine.

机构信息

Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.

出版信息

Metab Eng. 2011 May;13(3):282-93. doi: 10.1016/j.ymben.2011.03.001. Epub 2011 Mar 17.

Abstract

Specific Se-metabolites have been recognized to be the main elements responsible for beneficial effects of Se-enriched diet, and Se-methylselenocysteine (SeMCys) is thought to be among the most effective ones. Here we show that an engineered Saccharomyces cerevisiae strain, expressing a codon optimized heterologous selenocysteine methyltransferase and endowed with high intracellular levels of S-adenosyl-methionine, was able to accumulate SeMCys at levels higher than commercial selenized yeasts. A fine tuned carbon- and sulfate-limited fed-batch bioprocess was crucial to achieve good yields of biomass and SeMCys. Through the coupling of metabolic and bioprocess engineering we achieved a ∼24-fold increase in SeMCys, compared to certified reference material of selenized yeast. In addition, we investigated the interplay between sulfur and selenium metabolism and the possibility that redox imbalance occurred along with intracellular accumulation of Se. Collectively, our data show how the combination of metabolic and bioprocess engineering can be used for the production of selenized yeast enriched with beneficial Se-metabolites.

摘要

已经认识到特定的硒代谢物是富含硒饮食有益效果的主要元素,而硒代半胱氨酸(SeMCys)被认为是最有效的元素之一。在这里,我们展示了一种经过工程改造的酿酒酵母菌株,该菌株表达了一种密码子优化的异源硒代半胱氨酸甲基转移酶,并具有高水平的 S-腺苷甲硫氨酸,能够积累高于商业硒酵母的 SeMCys 水平。精细调整的碳和硫酸盐限制分批补料生物过程对于实现良好的生物量和 SeMCys 产量至关重要。通过代谢和生物过程工程的耦合,我们实现了 SeMCys 的产量增加了约 24 倍,与经过认证的硒酵母参考标准物质相比。此外,我们还研究了硫和硒代谢之间的相互作用,以及随着细胞内硒积累可能发生的氧化还原失衡的可能性。总的来说,我们的数据表明代谢和生物过程工程的结合如何用于生产富含有益硒代谢物的硒酵母。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验