Campos Paulo R A
Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970 Sao Carlos SP, Brazil.
Bull Math Biol. 2004 May;66(3):473-86. doi: 10.1016/j.bulm.2003.08.012.
We investigate the effect of deleterious mutations on the process of fixation of new advantageous mutants in an asexual population. In particular we wish to study the dependence of the process on the strength of the deleterious mutations. We suppose the existence of epistatic interaction between the genes. We study the model by means of branching process theory and also by numerical simulations. Our results show the occurrence of two distinct regimes of behavior for the probability of fixation of these variants. The occurrence of either regime depends on the ratio between the selective advantage of the beneficial mutation sb and on the selective parameter for deleterious mutations sd. In the former, which takes place for sb/sd< or =1, the probability of fixation increases with the epistasis parameter , whereas for sb/sd>>1 the probability of fixation is a complex function of and the mutation rate U. Surprisingly, we find that for the multiplicative landscape (alpha=1) the probability of fixation Pfix is given by Pfix= pib)e-U/sd where pi(sb) is the probability of fixation for the two-allele model in the absence of mutations as calculated by Haldane (1927, Proc. Camb. Phil. Soc., 26, 220-230) and Kimura (1962, Genetics, 47, 713-719).
我们研究了有害突变对无性繁殖群体中新的有利突变固定过程的影响。特别地,我们希望研究该过程对有害突变强度的依赖性。我们假定基因之间存在上位性相互作用。我们通过分支过程理论以及数值模拟来研究该模型。我们的结果表明,这些变异体固定概率出现了两种不同的行为模式。每种模式的出现取决于有益突变的选择优势(s_b)与有害突变的选择参数(s_d)之间的比率。在前者情况中,即(s_b/s_d \leq 1)时,固定概率随上位性参数增加,而当(s_b/s_d \gg 1)时,固定概率是上位性参数和突变率(U)的复杂函数。令人惊讶的是,我们发现对于乘性适应度景观((\alpha = 1)),固定概率(P_{fix})由(P_{fix} = \pi(s_b)e^{-U/s_d})给出,其中(\pi(s_b))是哈代(1927年,《剑桥哲学学会会报》,26卷,220 - 230页)和木村(1962年,《遗传学》,47卷,713 - 719页)计算的无突变情况下双等位基因模型的固定概率。