Suppr超能文献

通过微放射自显影-荧光原位杂交技术测定自养硝化生物膜中硝化细菌与异养细菌之间的生态生理相互作用

Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization.

作者信息

Kindaichi Tomonori, Ito Tsukasa, Okabe Satoshi

机构信息

Department of Urban and Environmental Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan.

出版信息

Appl Environ Microbiol. 2004 Mar;70(3):1641-50. doi: 10.1128/AEM.70.3.1641-1650.2004.

Abstract

Ecophysiological interactions between the community members (i.e., nitrifiers and heterotrophic bacteria) in a carbon-limited autotrophic nitrifying biofilm fed only NH(4)(+) as an energy source were investigated by using a full-cycle 16S rRNA approach followed by microautoradiography (MAR)-fluorescence in situ hybridization (FISH). Phylogenetic differentiation (identification) of heterotrophic bacteria was performed by 16S rRNA gene sequence analysis, and FISH probes were designed to determine the community structure and the spatial organization (i.e., niche differentiation) in the biofilm. FISH analysis showed that this autotrophic nitrifying biofilm was composed of 50% nitrifying bacteria (ammonia-oxidizing bacteria [AOB] and nitrite-oxidizing bacteria [NOB]) and 50% heterotrophic bacteria, and the distribution was as follows: members of the alpha subclass of the class Proteobacteria (alpha-Proteobacteria), 23%; gamma-Proteobacteria, 13%; green nonsulfur bacteria (GNSB), 9%; Cytophaga-Flavobacterium-Bacteroides (CFB) division, 2%; and unidentified (organisms that could not be hybridized with any probe except EUB338), 3%. These results indicated that a pair of nitrifiers (AOB and NOB) supported a heterotrophic bacterium via production of soluble microbial products (SMP). MAR-FISH revealed that the heterotrophic bacterial community was composed of bacteria that were phylogenetically and metabolically diverse and to some extent metabolically redundant, which ensured the stability of the ecosystem as a biofilm. alpha- and gamma-Proteobacteria dominated the utilization of [(14)C]acetic acid and (14)C-amino acids in this biofilm. Despite their low abundance (ca. 2%) in the biofilm community, members of the CFB cluster accounted for the largest fraction (ca. 64%) of the bacterial community consuming N-acetyl-D-[1-(14)C]glucosamine (NAG). The GNSB accounted for 9% of the (14)C-amino acid-consuming bacteria and 27% of the [(14)C]NAG-consuming bacteria but did not utilize [(14)C]acetic acid. Bacteria classified in the unidentified group accounted for 6% of the total heterotrophic bacteria and could utilize all organic substrates, including NAG. This showed that there was an efficient food web (carbon metabolism) in the autotrophic nitrifying biofilm community, which ensured maximum utilization of SMP produced by nitrifiers and prevented buildup of metabolites or waste materials of nitrifiers to significant levels.

摘要

通过全周期16S rRNA方法结合微自显影(MAR)-荧光原位杂交(FISH),研究了仅以NH(4)(+)作为能源的碳限制自养硝化生物膜中群落成员(即硝化细菌和异养细菌)之间的生态生理相互作用。通过16S rRNA基因序列分析对异养细菌进行系统发育分化(鉴定),并设计FISH探针来确定生物膜中的群落结构和空间组织(即生态位分化)。FISH分析表明,这种自养硝化生物膜由50%的硝化细菌(氨氧化细菌[AOB]和亚硝酸盐氧化细菌[NOB])和50%的异养细菌组成,其分布如下:变形菌纲α亚类(α-变形菌)成员占23%;γ-变形菌占13%;绿色非硫细菌(GNSB)占9%;噬纤维菌-黄杆菌-拟杆菌(CFB)类群占2%;未鉴定的(除EUB338外不能与任何探针杂交的生物)占3%。这些结果表明,一对硝化细菌(AOB和NOB)通过产生可溶性微生物产物(SMP)来支持一种异养细菌。MAR-FISH显示,异养细菌群落由系统发育和代谢多样且在一定程度上代谢冗余的细菌组成,这确保了作为生物膜的生态系统的稳定性。α-和γ-变形菌在该生物膜中对[(14)C]乙酸和(14)C-氨基酸的利用中占主导地位。尽管CFB类群在生物膜群落中的丰度较低(约2%),但其成员在消耗N-乙酰-D-[1-(14)C]葡糖胺(NAG)的细菌群落中占最大比例(约64%)。GNSB占消耗(14)C-氨基酸细菌的9%和消耗[(14)C]NAG细菌的27%,但不利用[(14)C]乙酸。分类在未鉴定组中的细菌占异养细菌总数的6%,并且可以利用包括NAG在内的所有有机底物。这表明在自养硝化生物膜群落中存在一个有效的食物网(碳代谢),它确保了硝化细菌产生SMP的最大利用,并防止硝化细菌的代谢产物或废料积累到显著水平。

相似文献

2
Fate of 14C-labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms.
Appl Environ Microbiol. 2005 Jul;71(7):3987-94. doi: 10.1128/AEM.71.7.3987-3994.2005.
4
Microbial community structure in autotrophic nitrifying granules characterized by experimental and simulation analyses.
Environ Microbiol. 2010 Jan;12(1):192-206. doi: 10.1111/j.1462-2920.2009.02060.x. Epub 2009 Oct 2.
5
Stability of partial nitrification and microbial population dynamics in a bioaugmented membrane bioreactor.
J Microbiol Biotechnol. 2009 Dec;19(12):1656-64. doi: 10.4014/jmb.0906.06006.
8
In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes.
Appl Environ Microbiol. 1999 Jul;65(7):3182-91. doi: 10.1128/AEM.65.7.3182-3191.1999.
9
A polyphasic approach to study ecophysiology of complex multispecies nitrifying biofilms.
Methods Enzymol. 2011;496:163-84. doi: 10.1016/B978-0-12-386489-5.00007-5.
10
Interactions of nitrifying bacteria and heterotrophs: identification of a Micavibrio-like putative predator of Nitrospira spp.
Appl Environ Microbiol. 2013 Mar;79(6):2027-37. doi: 10.1128/AEM.03408-12. Epub 2013 Jan 18.

引用本文的文献

3
Imaging biofilms using fluorescence hybridization: seeing is believing.
Front Cell Infect Microbiol. 2023 May 22;13:1195803. doi: 10.3389/fcimb.2023.1195803. eCollection 2023.
4
Microbial Diversity and Activity of Biofilms from Geothermal Springs in Croatia.
Microb Ecol. 2023 Nov;86(4):2305-2319. doi: 10.1007/s00248-023-02239-1. Epub 2023 May 20.
6
Comprehensive characterization of aerobic groundwater biotreatment media.
Water Res. 2023 Feb 15;230:119587. doi: 10.1016/j.watres.2023.119587. Epub 2023 Jan 7.
7
The Stochastic Assembly of Nitrobacter winogradskyi-Selected Microbiomes with Heterotrophs from Sewage Sludge or Grassland Soil.
Appl Environ Microbiol. 2022 Sep 13;88(17):e0078322. doi: 10.1128/aem.00783-22. Epub 2022 Aug 9.
10
Mutualistic relationship between Nitrospira and concomitant heterotrophs.
Environ Microbiol Rep. 2022 Feb;14(1):130-137. doi: 10.1111/1758-2229.13030. Epub 2021 Dec 3.

本文引用的文献

2
Spatial microbial distributions of nitrifiers and heterotrophs in mixed-population biofilms.
Biotechnol Bioeng. 1996 Apr 5;50(1):24-35. doi: 10.1002/(SICI)1097-0290(19960405)50:1<24::AID-BIT4>3.0.CO;2-3.
3
Characterization of an autotrophic nitrogen-removing biofilm from a highly loaded lab-scale rotating biological contactor.
Appl Environ Microbiol. 2003 Jun;69(6):3626-35. doi: 10.1128/AEM.69.6.3626-3635.2003.
5
Pseudoxanthomonas taiwanensis sp. nov., a novel thermophilic, N2O-producing species isolated from hot springs.
Int J Syst Evol Microbiol. 2002 Nov;52(Pt 6):2155-61. doi: 10.1099/00207713-52-6-2155.
6
Widespread N-acetyl-D-glucosamine uptake among pelagic marine bacteria and its ecological implications.
Appl Environ Microbiol. 2002 Nov;68(11):5554-62. doi: 10.1128/AEM.68.11.5554-5562.2002.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验