Suppr超能文献

谷氨酰胺转氨酶K(GTK)在大脑硫和α-酮酸代谢中的作用,以及在神经毒物可能的生物活化中的作用。

The role of glutamine transaminase K (GTK) in sulfur and alpha-keto acid metabolism in the brain, and in the possible bioactivation of neurotoxicants.

作者信息

Cooper Arthur J L

机构信息

Department of Biochemistry, Weill Medical College of Cornell University, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA.

出版信息

Neurochem Int. 2004 Jun;44(8):557-77. doi: 10.1016/j.neuint.2003.12.002.

Abstract

Glutamine transaminase K (GTK), which is a freely reversible glutamine (methionine) aromatic amino acid aminotransferase, is present in most mammalian tissues, including brain. Quantitatively, the most important amine donor in vivo is glutamine. The product of glutamine transamination (i.e., alpha-ketoglutaramate; alphaKGM) is rapidly removed by cyclization and/or conversion to alpha-ketoglutarate. Transamination is therefore "pulled" in the direction of glutamine utilization. Major biological roles of GTK are to maintain low levels of phenylpyruvate and to close the methionine salvage pathway. GTK also catalyzes the transamination of cystathionine, lanthionine, and thialysine to the corresponding alpha-keto acids, which cyclize to ketimines. The cyclic ketimines and several metabolites derived therefrom are found in brain. It is not clear whether these compounds have a biological function or are metabolic dead-ends. However, high-affinity binding of lanthionine ketimine (LK) to brain membranes has been reported. Mammalian tissues possess several enzymes capable of catalyzing transamination of kynurenine in vitro. Two of these kynurenine aminotransferases (KATs), namely KAT I and KAT II, are present in brain and have been extensively studied. KAT I and KAT II are identical to GTK and alpha-aminoadipate aminotransferase, respectively. GTK/KAT I is largely cytosolic in kidney, but mostly mitochondrial in brain. The same gene codes for both forms, but alternative splicing dictates whether a 32-amino acid mitochondrial-targeting sequence is present in the expressed protein. The activity of KAT I is altered by a missense mutation (E61G) in the spontaneously hypertensive rat. The symptoms may be due in part to alteration of kynurenine transamination. However, owing to strong competition from other amino acid substrates, the turnover of kynurenine to kynurenate by GTK/KAT I in nervous tissue must be slow unless kynurenine and GTK are sequestered in a compartment distinct from the major amino acid pools. The possibility is discussed that the spontaneous hypertension in rats carrying the GTK/KAT I mutation may be due in part to disruption of glutamine transamination. GTK is one of several pyridoxal 5'-phosphate (PLP)-containing enzymes that can catalyze non-physiological beta-elimination reactions with cysteine S-conjugates containing a good leaving group attached at the sulfur. These elimination reactions may contribute to the bioactivation of certain electrophiles, resulting in toxicity to kidney, liver, brain, and possibly other organs. On the other hand, the beta-lyase reaction catalyzed by GTK may be useful in the conversion of some cysteine S-conjugate prodrugs to active components in vivo. The roles of GTK in (a) brain nitrogen, sulfur, and aromatic amino acid/kynurenine metabolism, (b) brain alpha-keto acid metabolism, (c) bioactivation of certain electrophiles in brain, (d) prodrug targeting, and (e) maintenance of normal blood pressure deserve further study.

摘要

谷氨酰胺转氨酶K(GTK)是一种可自由可逆的谷氨酰胺(蛋氨酸)芳香族氨基酸转氨酶,存在于包括脑在内的大多数哺乳动物组织中。从数量上看,体内最重要的胺供体是谷氨酰胺。谷氨酰胺转氨作用的产物(即α-酮戊二酸;αKGM)可通过环化和/或转化为α-酮戊二酸而迅速去除。因此,转氨作用朝着谷氨酰胺利用的方向“拉动”。GTK的主要生物学作用是维持低水平的苯丙酮酸并封闭蛋氨酸补救途径。GTK还催化胱硫醚、羊毛硫氨酸和硫赖氨酸转氨生成相应的α-酮酸,后者环化生成酮亚胺。环状酮亚胺及其衍生的几种代谢产物在脑中被发现。目前尚不清楚这些化合物是否具有生物学功能或是否是代谢终产物。然而,已报道羊毛硫氨酸酮亚胺(LK)与脑膜具有高亲和力结合。哺乳动物组织拥有几种能够在体外催化犬尿氨酸转氨作用的酶。其中两种犬尿氨酸转氨酶(KATs),即KAT I和KAT II,存在于脑中并已得到广泛研究。KAT I和KAT II分别与GTK和α-氨基己二酸转氨酶相同。GTK/KAT I在肾脏中主要存在于胞质中,但在脑中大多存在于线粒体中。两种形式由同一个基因编码,但可变剪接决定了表达的蛋白质中是否存在一个32个氨基酸的线粒体靶向序列。自发性高血压大鼠中的一个错义突变(E61G)改变了KAT I的活性。这些症状可能部分归因于犬尿氨酸转氨作用的改变。然而,由于来自其他氨基酸底物的强烈竞争,除非犬尿氨酸和GTK被隔离在一个与主要氨基酸池不同的区室中否则GTK/KAT I在神经组织中将犬尿氨酸转化为犬尿酸的周转率必定很慢。有人讨论了携带GTK/KAT I突变的大鼠的自发性高血压可能部分归因于谷氨酰胺转氨作用中断的可能性。GTK是几种含磷酸吡哆醛(PLP)的酶之一,这些酶可催化与在硫原子上连接有良好离去基团的半胱氨酸S-共轭物发生非生理性β-消除反应。这些消除反应可能有助于某些亲电试剂的生物活化,从而对肾脏、肝脏、脑以及可能的其他器官产生毒性。另一方面,GTK催化的β-裂解反应可能有助于将一些半胱氨酸S-共轭前药在体内转化为活性成分。GTK在(a)脑氮、硫和芳香族氨基酸/犬尿氨酸代谢,(b)脑α-酮酸代谢,(c)脑内某些亲电试剂的生物活化,(d)前药靶向,以及(e)维持正常血压方面的作用值得进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验