Suppr超能文献

非线性混合效应模型:个体化与预测

Nonlinear mixed-effects modeling: individualization and prediction.

作者信息

Olofsen Erik, Dinges David F, Van Dongen Hans P A

机构信息

Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands.

出版信息

Aviat Space Environ Med. 2004 Mar;75(3 Suppl):A134-40.

Abstract

The development of biomathematical models for the prediction of fatigue and performance relies on statistical techniques to analyze experimental data and model simulations. Statistical models of empirical data have adjustable parameters with a priori unknown values. Interindividual variability in estimates of those values requires a form of smoothing. This traditionally consists of averaging observations across subjects, or fitting a model to the data of individual subjects first and subsequently averaging the parameter estimates. However, the standard errors of the parameter estimates are assessed inaccurately by such averaging methods. The reason is that intra- and inter-individual variabilities are intertwined. They can be separated by mixed-effects modeling in which model predictions are not only determined by fixed effects (usually constant parameters or functions of time) but also by random effects, describing the sampling of subject-specific parameter values from probability distributions. By estimating the parameters of the distributions of the random effects, mixed-effects models can describe experimental observations involving multiple subjects properly (i.e., yielding correct estimates of the standard errors) and parsimoniously (i.e., estimating no more parameters than necessary). Using a Bayesian approach, mixed-effects models can be "individualized" as observations are acquired that capture the unique characteristics of the individual at hand. Mixed-effects models, therefore, have unique advantages in research on human neurobehavioral functions, which frequently show large inter-individual differences. To illustrate this we analyzed laboratory neurobehavioral performance data acquired during sleep deprivation, using a nonlinear mixed-effects model. The results serve to demonstrate the usefulness of mixed-effects modeling for data-driven development of individualized predictive models of fatigue and performance.

摘要

用于预测疲劳和表现的生物数学模型的开发依赖于统计技术来分析实验数据和模型模拟。经验数据的统计模型具有先验未知值的可调整参数。这些值估计中的个体间变异性需要一种平滑形式。传统上,这包括对受试者的观察值进行平均,或者首先对个体受试者的数据拟合模型,然后对参数估计值进行平均。然而,通过这种平均方法对参数估计值的标准误差评估不准确。原因是个体内和个体间的变异性相互交织。它们可以通过混合效应建模来分离,在混合效应建模中,模型预测不仅由固定效应(通常是常数参数或时间函数)决定,还由随机效应决定,随机效应描述了从概率分布中对受试者特定参数值的抽样。通过估计随机效应分布的参数,混合效应模型可以恰当地(即产生正确的标准误差估计)和简约地(即估计的参数不超过必要数量)描述涉及多个受试者的实验观察。使用贝叶斯方法,随着获取捕获手头个体独特特征的观察结果,混合效应模型可以被“个性化”。因此,混合效应模型在人类神经行为功能研究中具有独特优势,人类神经行为功能经常表现出较大的个体间差异。为了说明这一点,我们使用非线性混合效应模型分析了睡眠剥夺期间获得的实验室神经行为表现数据。结果证明了混合效应建模对于基于数据驱动开发疲劳和表现的个性化预测模型的有用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验