Suppr超能文献

对通过高压冷冻保存的拟南芥分生组织细胞中体细胞板形成的电子断层扫描分析。

Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing.

作者信息

Seguí-Simarro José M, Austin Jotham R, White Erin A, Staehelin L Andrew

机构信息

Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347, USA.

出版信息

Plant Cell. 2004 Apr;16(4):836-56. doi: 10.1105/tpc.017749. Epub 2004 Mar 12.

Abstract

We have investigated the process of somatic-type cytokinesis in Arabidopsis (Arabidopsis thaliana) meristem cells with a three-dimensional resolution of approximately 7 nm by electron tomography of high-pressure frozen/freeze-substituted samples. Our data demonstrate that this process can be divided into four phases: phragmoplast initials, solid phragmoplast, transitional phragmoplast, and ring-shaped phragmoplast. Phragmoplast initials arise from clusters of polar microtubules (MTs) during late anaphase. At their equatorial planes, cell plate assembly sites are formed, consisting of a filamentous ribosome-excluding cell plate assembly matrix (CPAM) and Golgi-derived vesicles. The CPAM, which is found only around growing cell plate regions, is suggested to be responsible for regulating cell plate growth. Virtually all phragmoplast MTs terminate inside the CPAM. This association directs vesicles to the CPAM and thereby to the growing cell plate. Cell plate formation within the CPAM appears to be initiated by the tethering of vesicles by exocyst-like complexes. After vesicle fusion, hourglass-shaped vesicle intermediates are stretched to dumbbells by a mechanism that appears to involve the expansion of dynamin-like springs. This stretching process reduces vesicle volume by approximately 50%. At the same time, the lateral expansion of the phragmoplast initials and their CPAMs gives rise to the solid phragmoplast. Later arriving vesicles begin to fuse to the bulbous ends of the dumbbells, giving rise to the tubulo-vesicular membrane network (TVN). During the transitional phragmoplast stage, the CPAM and MTs disassemble and then reform in a peripheral ring phragmoplast configuration. This creates the centrifugally expanding peripheral cell plate growth zone, which leads to cell plate fusion with the cell wall. Simultaneously, the central TVN begins to mature into a tubular network, and ultimately into a planar fenestrated sheet (PFS), through the removal of membrane via clathrin-coated vesicles and by callose synthesis. Small secondary CPAMs with attached MTs arise de novo over remaining large fenestrae to focus local growth to these regions. When all of the fenestrae are closed, the new cell wall is complete. Few endoplasmic reticulum (ER) membranes are seen associated with the phragmoplast initials and with the TVN cell plate that is formed within the solid phragmoplast. ER progressively accumulates thereafter, reaching a maximum during the late PFS stage, when most cell plate growth is completed.

摘要

我们通过对高压冷冻/冷冻置换样品进行电子断层扫描,以约7纳米的三维分辨率研究了拟南芥分生组织细胞中的体细胞型胞质分裂过程。我们的数据表明,这一过程可分为四个阶段:成膜体初始阶段、固体成膜体、过渡成膜体和环形成膜体。成膜体初始阶段在后期末期由极性微管簇产生。在其赤道平面上,形成细胞板组装位点,由丝状核糖体排除细胞板组装基质(CPAM)和高尔基体衍生的囊泡组成。仅在生长中的细胞板区域周围发现的CPAM被认为负责调节细胞板的生长。几乎所有的成膜体微管都在CPAM内终止。这种关联将囊泡导向CPAM,进而导向生长中的细胞板。CPAM内的细胞板形成似乎是由类外排复合体将囊泡拴系引发的。囊泡融合后,沙漏形囊泡中间体通过一种似乎涉及动力蛋白样弹簧扩张的机制被拉伸成哑铃状。这个拉伸过程使囊泡体积减少约50%。与此同时,成膜体初始阶段及其CPAM的横向扩张产生了固体成膜体。后来到达的囊泡开始与哑铃状的球状末端融合,形成管状-囊泡膜网络(TVN)。在过渡成膜体阶段,CPAM和微管解体,然后以周边环形成膜体的形式重新形成。这产生了离心扩展的周边细胞板生长区,导致细胞板与细胞壁融合。同时,中央TVN开始成熟为管状网络,并最终通过网格蛋白包被囊泡去除膜和通过胼胝质合成形成平面有孔片层(PFS)。带有附着微管的小次生CPAM在剩余的大孔处重新出现,将局部生长集中到这些区域。当所有孔都关闭时,新的细胞壁就完成了。在成膜体初始阶段和在固体成膜体内形成的TVN细胞板中,很少能看到内质网(ER)膜与之相关联。此后,内质网逐渐积累,在PFS后期达到最大值,此时大多数细胞板生长完成。

相似文献

引用本文的文献

本文引用的文献

1
A "MICROTUBULE" IN PLANT CELL FINE STRUCTURE.植物细胞精细结构中的“微管”。
J Cell Biol. 1963 Oct 1;19(1):239-50. doi: 10.1083/jcb.19.1.239.
8
Surfing on microtubule ends.在微管末端移动。
Trends Cell Biol. 2003 May;13(5):229-37. doi: 10.1016/s0962-8924(03)00074-6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验