Suppr超能文献

线性能量传递、径迹结构与模型。综述

LET, track structure and models. A review.

作者信息

Kraft G, Krämer M, Scholz M

机构信息

Gesellschaft für Schwerionenforschung mbH, Darmstadt, Federal Republic of Germany.

出版信息

Radiat Environ Biophys. 1992;31(3):161-80. doi: 10.1007/BF01214825.

Abstract

Swift heavy ions when penetrating through matter strip off those electrons having a smaller orbital velocity than the ion velocity. The remaining electrons screen the nuclear charge yielding an effective charge. The effective charge of the ions interacts predominantly with the target electrons causing excitation and ionizations of the target atoms. Using the Bethe Bloch formula for the energy loss combined with the Barkas formula for effective charge, the energy loss values as well as unrestricted and restricted linear transfer can be calculated within a few percent of accuracy. From the primary energy loss only a small fraction of 10% or less is transformed into excitation. The major part of the energy loss is used for the ionization of the target atoms and the emission of the corresponding electrons with a high kinetic energy. These electrons form the track around the trajectory of the primary ion in which two thirds of the primary energy is deposited by collisions of primary, secondary and later generations of electrons with the target molecules. In the electron diffusion process the energy is transported from the center of the track into the halo. The radial dose decreases with the square of the radial distance from the center. The diameter of the track is determined by the maximum range of the emitted electrons, i.e. by the maximum energy electrons. All ions having the same velocity i.e. the same specific energy produce electrons of the same energy and therefore tracks of the same diameters independent of the effective charge. But the dose inside the track increases with the square of the effective charge. Track structure models using this continuous dose distributions produce a better agreement with the experiment than models based on microdosimetry. The critical volume as used in microdosimetry is too large compared to the size of the DNA as critical structure inside the biological objects. Track structure models yield better results because the gross-structure of the track i.e. its lateral extension and the thin down toward the end of the track is included in these calculations. In a recent refinement the repair capacity of the cell has been included in a track structure model by using the complete shouldered x-ray survival curve as a template for the local damage produced by the particle tracks. This improved model yields presently the best agreement with the experiment.

摘要

快速重离子穿透物质时,会剥离那些轨道速度比离子速度小的电子。剩余的电子屏蔽核电荷,产生有效电荷。离子的有效电荷主要与靶电子相互作用,导致靶原子的激发和电离。使用用于能量损失的贝特 - 布洛赫公式并结合用于有效电荷的巴尔卡斯公式,可以在百分之几的精度范围内计算能量损失值以及无限制和限制线性转移。从初始能量损失来看,只有10%或更少的一小部分转化为激发。能量损失的主要部分用于靶原子的电离以及发射具有高动能的相应电子。这些电子在初级离子轨迹周围形成径迹,其中三分之二的初级能量通过初级、次级及后续 generations of electrons与靶分子的碰撞而沉积。在电子扩散过程中,能量从径迹中心传输到晕区。径向剂量随距中心径向距离的平方而减小。径迹的直径由发射电子的最大射程决定,即由最大能量电子决定。所有具有相同速度即相同比能的离子产生相同能量的电子,因此具有相同直径的径迹,与有效电荷无关。但是径迹内的剂量随有效电荷的平方增加。使用这种连续剂量分布的径迹结构模型比基于微剂量学的模型与实验结果更吻合。与生物物体内作为关键结构的DNA大小相比,微剂量学中使用的临界体积太大。径迹结构模型产生更好的结果,因为这些计算中包括了径迹的总体结构,即其横向延伸和径迹末端的变细。在最近的一次改进中,通过使用完整的带肩X射线存活曲线作为粒子径迹产生的局部损伤的模板,将细胞的修复能力纳入径迹结构模型。这个改进后的模型目前与实验结果最为吻合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验