Tatsuno Masami, Okada Masato
ARL Division of Neural Systems, Memory and Aging, The University of Arizona, Tucson, AZ 85724-5115, USA.
Neural Comput. 2004 Apr;16(4):737-65. doi: 10.1162/089976604322860686.
A novel analytical method based on information geometry was recently proposed, and this method may provide useful insights into the statistical interactions within neural groups. The link between informationgeometric measures and the structure of neural interactions has not yet been elucidated, however, because of the ill-posed nature of the problem. Here, possible neural architectures underlying information-geometric measures are investigated using an isolated pair and an isolated triplet of model neurons. By assuming the existence of equilibrium states, we derive analytically the relationship between the information-geometric parameters and these simple neural architectures. For symmetric networks, the first- and second-order information-geometric parameters represent, respectively, the external input and the underlying connections between the neurons provided that the number of neurons used in the parameter estimation in the log-linear model and the number of neurons in the network are the same. For asymmetric networks, however, these parameters are dependent on both the intrinsic connections and the external inputs to each neuron. In addition, we derive the relation between the information-geometric parameter corresponding to the two-neuron interaction and a conventional cross-correlation measure. We also show that the information-geometric parameters vary depending on the number of neurons assumed for parameter estimation in the log-linear model. This finding suggests a need to examine the information-geometric method carefully. A possible criterion for choosing an appropriate orthogonal coordinate is also discussed. This article points out the importance of a model-based approach and sheds light on the possible neural structure underlying the application of information geometry to neural network analysis.
最近提出了一种基于信息几何的新型分析方法,该方法可能为神经群体内的统计相互作用提供有用的见解。然而,由于问题的不适定性,信息几何度量与神经相互作用结构之间的联系尚未阐明。在这里,使用一对孤立的模型神经元和一个孤立的三元组模型神经元来研究信息几何度量背后可能的神经结构。通过假设平衡态的存在,我们解析地推导了信息几何参数与这些简单神经结构之间的关系。对于对称网络,一阶和二阶信息几何参数分别表示外部输入和神经元之间的潜在连接,前提是对数线性模型中用于参数估计的神经元数量与网络中的神经元数量相同。然而,对于非对称网络,这些参数取决于每个神经元的内在连接和外部输入。此外,我们推导了对应于双神经元相互作用的信息几何参数与传统互相关度量之间的关系。我们还表明,信息几何参数会根据对数线性模型中假设用于参数估计的神经元数量而变化。这一发现表明需要仔细研究信息几何方法。还讨论了选择合适正交坐标的可能标准。本文指出了基于模型方法的重要性,并揭示了信息几何应用于神经网络分析背后可能的神经结构。