School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5746, Iran.
School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5531, Iran.
Commun Biol. 2023 Feb 15;6(1):169. doi: 10.1038/s42003-023-04511-z.
Identifying network architecture from observed neural activities is crucial in neuroscience studies. A key requirement is knowledge of the statistical input-output relation of single neurons in vivo. By utilizing an exact analytical solution of the spike-timing for leaky integrate-and-fire neurons under noisy inputs balanced near the threshold, we construct a framework that links synaptic type, strength, and spiking nonlinearity with the statistics of neuronal population activity. The framework explains structured pairwise and higher-order interactions of neurons receiving common inputs under different architectures. We compared the theoretical predictions with the activity of monkey and mouse V1 neurons and found that excitatory inputs given to pairs explained the observed sparse activity characterized by strong negative triple-wise interactions, thereby ruling out the alternative explanation by shared inhibition. Moreover, we showed that the strong interactions are a signature of excitatory rather than inhibitory inputs whenever the spontaneous rate is low. We present a guide map of neural interactions that help researchers to specify the hidden neuronal motifs underlying observed interactions found in empirical data.
从观察到的神经活动中识别网络结构在神经科学研究中至关重要。一个关键要求是了解体内单个神经元的统计输入-输出关系。通过利用在接近阈值的噪声输入下,漏积分和放电神经元的尖峰时间的精确解析解,我们构建了一个框架,将突触类型、强度和放电非线性与神经元群体活动的统计联系起来。该框架解释了在不同结构下接收共同输入的神经元的结构化成对和更高阶相互作用。我们将理论预测与猴子和老鼠 V1 神经元的活动进行了比较,发现给予成对的兴奋性输入解释了观察到的稀疏活动,其特征是强烈的负三重相互作用,从而排除了由共同抑制作用的替代解释。此外,我们表明,只要自发率较低,强烈的相互作用就是兴奋性输入而不是抑制性输入的特征。我们提出了一个神经相互作用的指南图,帮助研究人员指定隐藏在经验数据中观察到的相互作用背后的神经元模式。