Nayeem Mohammed A
DIR ETP LPC MEM, National Institute of Environment and Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
Antioxid Redox Signal. 2004 Apr;6(2):375-83. doi: 10.1089/152308604322899440.
In this study, we examined whether sublethal simulated ischemia (SSI) induces delayed cellular protection in mouse cardiac myocytes, and whether the delayed cellular protection depends on the activation of protein kinase C-epsilon (PKC-epsilon), inducible nitric oxide synthase (iNOS), and ATP-sensitive K(+) (K(ATP)) channels against subsequent sustained simulated ischemia (SI). The following groups of mouse cardiac myocytes were studied: (a) SI: incubation with SI buffer for 1 h; (b) SSI: incubation with SSI buffer for 30 min; (c) SSI + PKC inhibitor, chelerythrine chloride (CCl): SSI and 1 micro M CCl; (d) SSI + iNOS inhibitor, S-methylthiourea (SMT): SSI and 100 nM SMT; (e) SSI + K(ATP) channel blocker, glibenclamide (Glb): SSI and 50 micro M Glb; (f) SSI + mitochondrial K(ATP) channel blocker, 5-hydroxydecanoate (5-HD): SSI and 50 micro M 5-HD. The release of lactate dehydrogenase into the medium and the amount remaining in the cells was measured, and A(1) adenosine receptor, PKC-epsilon, and iNOS were detected through western blot analysis. The delayed cellular protection acquired due to SSI showed a decreased release of lactate dehydrogenase (%) from 46.51 +/- 1.60 to 37.00 +/- 1.34 (p < 0.001) and was blocked by CCl (47.08 +/- 0.95), SMT (48.08 +/- 1.18), Glb (45.88 +/- 1.31), and 5-HD (47.20 +/- 1.56). Simultaneously, SSI-induced up-regulation of A(1) adenosine receptor, PKC-epsilon, iNOS, and opening of both membrane and mitochondrial K(ATP) channels also was observed compared with controls.